Skip to main content

Bayesian Analysis

  • Chapter
  • First Online:
Advanced Methods for Modeling Markets

Abstract

Please set all the program codes in this chapter as given in the MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It may seem extreme to cite such an ancient reference. However, Rev. Thomas Bayes’ essay, as presented by Richard Price to the Royal Society, is a remarkably sophisticated and modern treatise about probability and inference if one updates its eighteenth century notation to twenty-first century standards. It no doubt languished in the archives for centuries because it was that far ahead of the science of the time.

  2. 2.

    A surprising result is that our old friend, the sample mean, is not admissible under squared error loss in three or more dimensions (Stein 1956 and James and Stein 1961)!

  3. 3.

    Suppose that y = α + βx + ε with E(ε) = 0, E(x ε) = 0, and β ≠ 0. Then E(y| x) = α + βx. Further suppose that E(y) = E(x) = 0. Then E(y) = E[E(y| x)] = α + βE(x). Since E(y) = E(x) = 0, then α = 0.

  4. 4.

    The MLE is also the least-squares estimate that minimizes sums-of-squares errors: \( \sum_{i=1}^n{\left({y}_i-\beta {x}_i\right)}^2. \) Compare with Sect. 6.4.1, Vol. I and Sect. 1.4.1 in this volume.

  5. 5.

    But amazingly good looking (for statisticians).

  6. 6.

    Exponential families include almost every distribution we can easily write down, except the uniform and t-distribution.

  7. 7.

    Frequentists often use the subjunctive mood when describing inference or hypothesis testing: “The null hypothesis would be rejected in 5% of all random samples if it were true.” Bayesian use the indicative mood: “The posterior probability of the null hypothesis is 0.05 given our data and model.”

  8. 8.

    If we modify the prior distributions slightly, they are conjugate and have a closed form. The modification conditions the slope on the error variance: \( \beta\,{\mid}\,{\sigma}^2\,{\sim}\,N\left({b}_0,{\sigma}^2{v}_0^2\right) \) and \( {\sigma}^2\,{\sim}\,IG\left(\frac{r_0}{2},{s}_0/2\right) \). This results in a “scale free” model: you can multiply y and x by a constant without changing the prior distributions. Instead of pursuing the algebra for this specification, we think it is a better use of time to introduce numerical methods.

  9. 9.

    It is strange nomenclature. Metropolis et al. (1953) generated random variables from the Gibbs distribution, which describes the distribution of energy states for a system of atoms. Because they were sampling from a Gibbs distribution, this special case is called “Gibbs sampling” even when it is not applied to a Gibbs distribution.

  10. 10.

    In multivariate regression models, β would be the vector of regression coefficients.

  11. 11.

    In fairness to Newton and Raftery (1994), their method is not the main focus of their paper.

  12. 12.

    Some Bayesians refer to the distribution on β i |μ β , V β as the “prior” and the distributions μ|μ 0, V 0 and V|r, R as “hyperpriors.” Others view β i |μ β , V β as part of the random-coefficients “model.” While this occasionally causes some confusion among Bayesians, the difference is unimportant in practice, as both the probability model and the priors should be carefully considered and should represent the analyst’s subjective beliefs. In this chapter we have avoided making a strong distinction between models and prior.

References

  • Adigüzel, F., Wedel, M.: Split questionnaire design for massive surveys. J. Mark. Res. 45, 608–617 (2008)

    Article  Google Scholar 

  • Akaike, H.: A new look at statistical model identification. IEEE Trans. Autom. Control. 19, 716–723 (1974)

    Article  Google Scholar 

  • Allenby, G.M., Lenk, P.J.: Modeling household purchase behavior with logistic normal regression. J. Am. Stat. Assoc. 89, 1218–1231 (1994)

    Article  Google Scholar 

  • Allenby, G.M., Rossi, P.E.: Marketing models of consumer heterogeneity. J. Econ. 89, 57–78 (1998)

    Article  Google Scholar 

  • Allenby, G.M., Arora, N., Ginter, J.L.: Incorporating prior knowledge into the analysis of conjoint studies. J. Mark. Res. 32, 152–162 (1995)

    Article  Google Scholar 

  • Allenby, G.M., Arora, N., Ginter, J.L.: On the heterogeneity of demand. J. Mark. Res. 35, 384–389 (1998)

    Google Scholar 

  • Andrews, R.L., Currim, I.S., Leeflang, P.S.H., Lim, J.: Estimating the SCAN* PRO model of store sales: HB, FM or just OLS? Int. J. Res. Mark. 25, 22–33 (2008)

    Article  Google Scholar 

  • Andrews, R.L., Currim, I.S., Leeflang, P.S.H.: A comparison of sales response predictions from demand models applied to store-level versus panel data. J. Bus. Econ. Stat. 29, 319–326 (2011)

    Article  Google Scholar 

  • Ansari, A., Essegaier, S., Kohli, R.: Internet recommendation systems. J. Mark. Res. 37, 363–375 (2000a)

    Article  Google Scholar 

  • Ansari, A., Jedidi, K., Jagpal, S.: A hierarchical Bayesian methodology for treating heterogeneity in structural equation models. Mark. Sci. 19, 328–347 (2000b)

    Article  Google Scholar 

  • Ansari, A., Jedidi, K., Dube, L.: Heterogeneous factor analysis models: a Bayesian approach. Psychometrika. 67, 49–77 (2002)

    Article  Google Scholar 

  • Aribarg, A., Arora, N., Kang, M.Y.: Predicting joint choice using individual data. Mark. Sci. 29, 139–157 (2010)

    Article  Google Scholar 

  • Arora, N., Allenby, G.M.: Measuring the influence of individual preference structures in group decision making. J. Mark. Res. 36, 476–487 (1999)

    Article  Google Scholar 

  • Bagozzi, R.P., Yi, Y.: On the evaluation of structural equation models. J. Acad. Mark. Sci. 16, 74–94 (1988)

    Article  Google Scholar 

  • Bass, F.M.: A new product growth model for consumer durables. Manag. Sci. 15, 215–227 (1969)

    Article  Google Scholar 

  • Bayes, T.: An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763)

    Article  Google Scholar 

  • Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York (1985)

    Book  Google Scholar 

  • Bernardo, J., Smith, A.F.M.: Bayesian Theory. John Wiley and Sons, New York (1994)

    Book  Google Scholar 

  • Blattberg, R.C., George, E.I.: Shrinkage estimation of price and promotional elasticities: seemingly unrelated equations. J. Am. Stat. Assoc. 86, 304–315 (1991)

    Article  Google Scholar 

  • Bradlow, E.T., Fader, P.S.: A Bayesian lifetime model for the “Hot 100” Billboard songs. J. Am. Stat. Assoc. 96, 368–381 (2001)

    Article  Google Scholar 

  • Bradlow, E.T., Schmittlein, D.C.: The little engines that could: Modeling the performance of World Wide Web search engines. Mark. Sci. 19, 43–62 (2000)

    Article  Google Scholar 

  • Bruce, N.I.: Pooling and dynamic forgetting effects in multitheme advertising: tracking the advertising sales relationship with particle filter. Mark. Sci. 27, 659–673 (2008)

    Article  Google Scholar 

  • Bruce, N.I., Foutz, N.Z., Kolsarici, C.: Dynamic effectiveness of advertising and word of mouth in sequential distribution of new products. J. Mark. Res. 49, 469–486 (2012)

    Article  Google Scholar 

  • Carpenter, B., Gelman, A., Hoffman, M. Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., and Riddell, A.: Stan: a probabilistic programming language. J. Stat. Softw. 76(1), (2017)

    Google Scholar 

  • Chiang, J., Chib, S., Narasimhan, C.: Markov chain Monte Carlo and models of consideration set and parameter heterogeneity. J. Econ. 89, 223–248 (1998)

    Article  Google Scholar 

  • Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90(432), 1312–1321 (1995)

    Article  Google Scholar 

  • Chung, T.S., Rust, R.T., Wedel, M.: My mobile music: an adaptive personalization system for digital audio players. Mark. Sci. 28, 52–68 (2009)

    Article  Google Scholar 

  • Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

    Article  Google Scholar 

  • De Bruyn, A., Liechty, J.C., Huizingh, E.K., Lilien, G.L.: Offering online recommendations with minimum customer input through conjoint-based decision aids. Mark. Sci. 27, 443–460 (2008)

    Article  Google Scholar 

  • De Finetti, B.: “La Prévision: Ses Lois Logiques, Ses Sources Subjectives”, Annales de l”Institut Henri Poincaré, 7: 1–68; translated as “Foresight. Its Logical Laws, Its Subjective Sources”, in Studies in Subjective Probability, H. E. Kyburg, Jr. and H. E. Smokler (eds.), Robert E. Krieger Publishing Company, New York, 1980 (1937)

    Google Scholar 

  • De Groot, M.: Optimal Statistical Decisions. John Wiley and Sons, Hoboken, NJ (1970)

    Google Scholar 

  • DeSarbo, W.S., Kim, Y., Fong, D.: A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. J. Econ. 89, 79–108 (1999)

    Article  Google Scholar 

  • Diaconis, P., Ylvisaker, D.: Conjugate priors for exponential families. Ann. Stat. 7(2), 269–281 (1979)

    Article  Google Scholar 

  • Doob, J. L. Application of the theory of martingales. In: Actes du Colloque International Le Calcul des Probabilit´es et ses applications, (Lyon, 28 juin–3 juillet 1948), pp. 23–27. CNRS, Paris (1949)

    Google Scholar 

  • Edwards, Y.D., Allenby, G.M.: Multivariate analysis of multiple response data. J. Mark. Res. 40, 321–334 (2003)

    Article  Google Scholar 

  • Feit, E.M., Beltramo, M.A., Feinberg, F.M.: Reality check: combining choice experiments with market data to estimate the importance of product attributes. Manag. Sci. 56, 785–800 (2010)

    Article  Google Scholar 

  • Feit, E.M., Wang, P., Bradlow, E.T., Fader, P.S.: Fusing aggregate and disaggregate data with an application to multiplatform media consumption. J. Mark. Res. 50, 348–364 (2013)

    Article  Google Scholar 

  • Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18, 39–50 (1981)

    Google Scholar 

  • Gelfand, A.E., Dey, D.K.: Bayesian model choice: asymptotics and exact calculations. J. R. Stat. Soc. Ser. B. 56, 501–514 (1994)

    Google Scholar 

  • Gelfand, A.E., Smith, A.F.M.: Sampling based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)

    Article  Google Scholar 

  • Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York, NY (2006)

    Book  Google Scholar 

  • Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences (with discussion). Stat. Sci. 7, 503–507 (1992)

    Article  Google Scholar 

  • Gelman, A. Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press Taylor and Francis Group, Boca Raton, FL (2014)

    Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  • Gilbride, T.J., Allenby, G.M.: A choice model with conjunctive, disjunctive, and compensatory screening rules. Mark. Sci. 23, 391–406 (2004)

    Article  Google Scholar 

  • Gilula, Z., McCulloch, R.E., Rossi, P.E.: A direct approach to data fusion. J. Mark. Res. 43, 73–83 (2006)

    Article  Google Scholar 

  • Good, I.J., Gaskins, R.A.: Nonparametric roughness penalties for probability densities. Biometrika. 58, 255–277 (1971)

    Article  Google Scholar 

  • Good, I.J., Gaskins, R.A.: Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. J. Am. Stat. Assoc. 75, 42–56 (1980)

    Article  Google Scholar 

  • Guadagni, P.M., Little, J.D.: A logit model of brand choice calibrated on scanner data. Mark. Sci. 2, 203–238 (1983)

    Article  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains, and their applications. Biometrika. 57, 97–109 (1970)

    Article  Google Scholar 

  • James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of the Fourth Berelely Symposium on Mathematical Statistics and Probability, pp. 361–379 (1961)

    Google Scholar 

  • Jedidi, K., Ansari, A.: Bayesian structural equation models for multilevel data. In: Marcoulides, G. A., Schumacker, R. E. (eds.) .New Developments and Techniques in Structural Equation Modeling, pp. 129–157, Psychology Press, Westminster (2001)

    Google Scholar 

  • Kalyanam, K., Shively, T.S.: Estimating irregular pricing effects: a stochastic spline regression approach. J. Mark. Res. 35, 16–29 (1998)

    Google Scholar 

  • Kamakura, W.A., Russell, G.: A probabilistic choice model for market segmentation and elasticity structure. J. Mark. Res. 26, 379–390 (1989)

    Article  Google Scholar 

  • Kim, J., Gyo, U.M., Feinberg, F.M.: Assessing heterogeneity in discrete choice models using a Dirichlet process prior. Rev. Mark. Sci. 2, (2004)

    Google Scholar 

  • Kim, J.G., Menzefricke, U., Feinberg, F.M.: Capturing flexible heterogeneous utility curves: a Bayesian spline approach. Manag. Sci. 53, 340–354 (2007)

    Article  Google Scholar 

  • Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41, 495–502 (1970)

    Article  Google Scholar 

  • Kruschke, J.K.: Doing Bayesian Data Analysis. Academic Press, Amsterdam (2015)

    Google Scholar 

  • Lee, J., Boatwright, P., Kamakura, W.A.: A Bayesian model for prelaunch sales forecasting of recorded music. Manag. Sci. 49, 179–196 (2003)

    Article  Google Scholar 

  • Lenk, P.J.: Hierarchical Bayes forecasts of multinomial Dirichlet data applied to coupon redemptions. J. Forecast. 11, 603–619 (1992)

    Article  Google Scholar 

  • Lenk, P.J.: Simulation pseudo-bais correction to the harmonic mean estimator of integrated likelihoods. J. Comput. Graph. Stat. 18(4), 941–960 (2009)

    Article  Google Scholar 

  • Lenk, P.J., DeSarbo, W.S.: Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika. 65, 93–119 (2000)

    Article  Google Scholar 

  • Lenk, P.J., Orme, B.: The value of informative priors in Bayesian inference with sparse data. J. Mark. Res. 46, 832–845 (2009)

    Article  Google Scholar 

  • Lenk, P.J., Rao, A.G.: New models from old: forecasting product adoption by hierarchical Bayes procedures. Mark. Sci. 9, 42–53 (1990)

    Article  Google Scholar 

  • Lenk, P.J., DeSarbo, W.S., Green, P.E., Young, M.R.: Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs. Mark. Sci. 15, 173–191 (1996)

    Article  Google Scholar 

  • Lenk, P., Wedel, M., Böckenholt, U.: Bayesian estimation of circumplex models subject to prior theory constraints and scale-usage bias. Psychometrika. 71, 33–55 (2006)

    Article  Google Scholar 

  • Li, M., Tobias, J.L.: Bayesian inference in a correlated random coefficients model: modeling causal effect heterogeneity with an application to heterogeneous returns to schooling. J. Econ. 162, 345–361 (2011)

    Article  Google Scholar 

  • Little, R. J., and Rubin, D. B.: Statistical Analysis with Missing Data, 2nd edn. John Wiley and Sons, Hoboken, New Jersey (2002)

    Google Scholar 

  • Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS − a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)

    Article  Google Scholar 

  • Manchanda, P., Ansari, A., Gupta, S.: The “shopping basket”: a model for multicategory purchase incidence decisions. Mark. Sci. 18, 95–114 (1999)

    Article  Google Scholar 

  • Manchanda, P., Rossi, P.E., Chintagunta, P.K.: Response modeling with nonrandom marketing-mix variables. J. Mark. Res. 41, 467–478 (2004)

    Article  Google Scholar 

  • Martin, A.D., Quinn, K.M., Park, J.H.: MCMCpack: Markov Chain Monte Carlo in R. J. Stat. Softw. 42, 1–21 (2011)

    Article  Google Scholar 

  • McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York (2004)

    Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, N.M., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953)

    Article  Google Scholar 

  • Moe, W.W., Fader, P.S.: Using advance purchase orders to forecast new product sales. Mark. Sci. 21, 347–364 (2002)

    Article  Google Scholar 

  • Montgomery, A.L.: Creating micro-marketing pricing strategies using supermarket scanner data. Mark. Sci. 16, 315–337 (1997)

    Article  Google Scholar 

  • Montgomery, A.L., Rossi, P.E.: Estimating price elasticities with theory-based priors. J. Mark. Res. 36, 413–423 (1999)

    Google Scholar 

  • Montoya, R., Netzer, O., Jedidi, K.: Dynamic allocation of pharmaceutical detailing and sampling for long-term profitability. Mark. Sci. 29, 909–924 (2010)

    Article  Google Scholar 

  • Morey, R.D., Rouder, J.N., Jamil, T.: BayesFactor: Computation of Bayes factors for common designs, R package version 0.9.12-2, http://CRAN.R-project.org/package=BayesFactor (2015)

  • Naik, P.A., Raman, K.: Understanding the impact of synergy in multimedia communications. J. Mark. Res. 40, 375–388 (2003)

    Article  Google Scholar 

  • Naik, P.A., Mantrala, M.K., Sawyer, A.G.: Planning media schedules in the presence of dynamic advertising quality. Mark. Sci. 17, 214–235 (1998)

    Article  Google Scholar 

  • Neelameghan, R., Chintagunta, P.K.: A Bayesian model to forecast new product performance in domestic and international markets. Mark. Sci. 18, 115–136 (1999)

    Article  Google Scholar 

  • Netzer, O., Lattin, J.M., Srinivasan, V.: A hidden Markov model of customer relationship dynamics. Mark. Sci. 27, 185–204 (2008)

    Article  Google Scholar 

  • Newton, M., Raftery, A.: Approximate Bayesian inference with weighted likelihood bootstrap. J. R. Stat. Soc. Ser. B. 56(1), 3–48 (1994)

    Google Scholar 

  • Park, J., DeSarbo, W.S., Liechty, J.: A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. Psychometrika. 73, 451–472 (2008)

    Article  Google Scholar 

  • Pauwels, K.H., Currim, I., Dekimpe, M.G., Hanssens, D.M., Mizik, N., Ghysels, E., Naik, P.: Modeling marketing dynamics by time series econometrics. Mark. Lett. 15, 167–183 (2004)

    Article  Google Scholar 

  • Plummer, M: Just Another Gibbs Sampler available at http://mcmc-jags.sourceforge.net/ (2015)

  • Raudenbush, S. W., Bryk, A. S.: Hierarchical Linear Models: Applications and Data Analysis Methods, vol. 1. Sage, Newbury Park, CA (2002)

    Google Scholar 

  • Rossi, P. Bayesm: Bayesian Inference for Marketing/Micro-Econometrics, R package version 3.0-2, http://CRAN.R-project.org/package=bayesm (2015)

  • Rossi, P.E., Allenby, G.M.: Bayesian statistics and marketing. Mark. Sci. 22, 304–328 (2003)

    Article  Google Scholar 

  • Rossi, P.E., Gilula, Z., Allenby, G.M.: Overcoming scale usage heterogeneity: a Bayesian hierarchical approach. J. Am. Stat. Assoc. 96, 20–31 (2001)

    Article  Google Scholar 

  • Rossi, P.E., Allenby, G.M., McCulloch, R.: Bayesian Statistics and Marketing. John Wiley and Sons, Hoboken, NJ (2012)

    Google Scholar 

  • Savage, J.L.: The Foundations of Statistics. John Wiley and Sons, New York, NY (1954)

    Google Scholar 

  • Schwartz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  Google Scholar 

  • Scott, S.L.: A modern look at the multi-armed bandit. Appl. Stoch. Model. Bus. Ind. 26, 639–658 (2010)

    Article  Google Scholar 

  • Seetharaman, P.B., Ainslie, A., Chintagunta, P.K.: Investigating household state dependence effects across categories. J. Mark. Res. 36, 488–500 (1999)

    Google Scholar 

  • Shively, T.S., Allenby, G.M., Kohn, R.: A nonparametric approach to identifying latent relationships in hierarchical models. Mark. Sci. 19, 149–162 (2000)

    Article  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. 64, 583–639 (2002)

    Article  Google Scholar 

  • Steenkamp, J-B.E.M., Baumgartner, H.: On the use of structural equation models for marketing modeling. Int. J. Res. Mark. 17, 195–202 (2000)

    Article  Google Scholar 

  • Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Proceedings of the Third Berelely Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956)

    Google Scholar 

  • Swait, J. D.: Probabilistic choice set generation in transportation demand models. Doctoral dissertation, Massachusetts Institute of Technology (1984)

    Google Scholar 

  • Talukdar, D., Sudhir, K., Ainslie, A.: Investigating new product diffusion across products and countries. Mark. Sci. 21, 97–114 (2002)

    Article  Google Scholar 

  • Van Heerde, H., Helsen, K., Dekimpe, M.G.: The impact of a product-harm crisis on marketing effectiveness. Mark. Sci. 26, 230–245 (2007)

    Article  Google Scholar 

  • Van Ittersum, K., Feinberg, F.M.: Cumulative timed intent: A new predictive tool for technology adoption. J. Mark. Res. 47, 808–822 (2010)

    Article  Google Scholar 

  • Van Nierop, E., Bronnenberg, B., Paap, R., Wedel, M., Franses, P.H.: Retrieving unobserved consideration sets from household panel data. J. Mark. Res. 47, 63–74 (2010)

    Article  Google Scholar 

  • Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press/John Wiley and Sons, Princeton/New York (1944)

    Google Scholar 

  • Ying, Y., Feinberg, F., Wedel, M.: Leveraging missing ratings to improve online recommendation systems. J. Mark. Res. 43, 355–365 (2006)

    Article  Google Scholar 

  • Wedel, M., Kamakura, W.A.: Market Segmentation, Conceptual and Methodological Foundations. Kluwer Ac. Publishers, Boston (2000)

    Google Scholar 

  • Zantedeschi, D., Feit, E.M., Bradlow, E.T. Measuring multi-channel advertising effectiveness. Manag. Sci., forthcoming (2016). http://pubsonline.informs.org/doi/abs/10.1287/mnsc.2016.2451?journalCode=mnsc&

  • Zanutto, E.L., Bradlow, E.T.: Data pruning in consumer choice models. Quant. Mark. Econ. 4, 267–287 (2006)

    Article  Google Scholar 

  • Zeithammer, R., Lenk, P.J.: Bayesian estimation of multivariate normal models when dimensions are absent. Quant. Mark. Econ. 4, 241–265 (2006)

    Article  Google Scholar 

  • Zellner, A.: Optimal information processing and Bayes's Theorem. Am. Stat. 42, 278–280 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elea McDonnell Feit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feit, E.M., Feinberg, F.M., Lenk, P.J. (2017). Bayesian Analysis. In: Leeflang, P., Wieringa, J., Bijmolt, T., Pauwels, K. (eds) Advanced Methods for Modeling Markets. International Series in Quantitative Marketing. Springer, Cham. https://doi.org/10.1007/978-3-319-53469-5_16

Download citation

Publish with us

Policies and ethics