Source Camera Identification Based on Guided Image Estimation and Block Weighted Average

  • Le-Bing Zhang
  • Fei PengEmail author
  • Min Long
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


Sensor pattern noise (SPN) has been widely used in source camera identification. However, the SPN extracted from natural image may be contaminated by its content and eventually introduce side effect to the identification accuracy. In this paper, an effective source camera identification scheme based on guided image estimation and block weighted average is proposed. Before the SPN extraction, an adaptive SPN estimator based on image content is implemented to reduce the influence of image scene and improve the quality of the SPN. Furthermore, a novel camera reference SPN construction method is put forward by using some ordinary images, instead of the blue sky images in previous schemes, and a block weighted average approach is used to suppress the influence of the image scenes in the reference SPN. Experimental results and analysis indicate that the proposed method can effectively identify the source of the natural image, especially in actual forensics environment with a small number of images.


Source camera identification Guided image filtering Block weighted average Sensor pattern noise 



This work was supported in part by project supported by National Natural Science Foundation of China (Grant Nos. 61572182, 61370225), project supported by Hunan Provincial Natural Science Foundation of China (Grant No. 15JJ2007), and supported by the Scientific Research Plan of Hunan Provincial Science and Technology Department of China (2014FJ4161).

The authors thank Prof. Xiangui Kang from Sun Yat-sen University for providing the source code of CAGIF method.


  1. 1.
    Choi, S., Lam, E.Y., Wong, K.K.Y.: Source camera identification using footprints from lens aberration. In: Proceedings of SPIE (2006)Google Scholar
  2. 2.
    Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: ACM Multimedia and Security Workshop, Geneva, Switzerland (2006)Google Scholar
  3. 3.
    Popescu, A.C., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Trans. Signal Process. 53(10), 3948–3959 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lukásˇ, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)CrossRefGoogle Scholar
  5. 5.
    Sutcu, Y., Batram, S.H., Sencar, T., Memon, N.: Improvements on sensor noise based source camera identification. In: Proceedings of IEEE International Conference on Multimedia and Expo, Beijing, China, 2––5 July, pp. 24––27 (2007)Google Scholar
  6. 6.
    Chen, M., Fridrich, J., Goljan, M., Lukásˇ, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, C.T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 5(2), 280–287 (2010)CrossRefGoogle Scholar
  8. 8.
    Fridrich, J.: Sensor defects in digital image forensic. In: Senkar, H.T., Memon, N. (eds.) Digital Image Forensics, pp. 179–218. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Lin, X., Li, C.T.: Preprocessing reference sensor pattern noise via spectrum equalization. IEEE Trans. Inf. Forensics Secur. 11(1), 126–140 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chierchia, G., Parrilli, S., Poggi, G., Sansone, C., Verdoliva, L.: On the influence of denoising in PRNU based forgery detection. In: Proceedings of 2nd ACM Workshop on Multimedia Forensics, Security and Intelligence, pp. 117–122, New York, NY, USA (2010)Google Scholar
  11. 11.
    Kang, X., Chen, J., Lin, K., Anjie, P.: A context-adaptive SPN predictor for trustworthy source camera identification. EURASIP J. Image Video Process. 2014(1), 1–11 (2014)CrossRefGoogle Scholar
  12. 12.
    Zeng, H., Kang, X.: Fast source camera identification using content adaptive guided image filter. J. Forensic Sci. 61(2), 520–526 (2016)CrossRefGoogle Scholar
  13. 13.
    Satta, R.: Sensor Pattern Noise matching based on reliability map for source camera identification. In: Proceedings of 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), Berlin, Germany (2015)Google Scholar
  14. 14.
    Sorrell, M.J.: Digital camera source identification through JPEG quantisation. In: Multimedia Forensics and Security Information Science Reference, Hershey (2008)Google Scholar
  15. 15.
    Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: Source camera identification for heavily JPEG compressed low resolution still images. J. Forensic Sci. 54(3), 628–638 (2009)CrossRefGoogle Scholar
  16. 16.
    Sankur, B., Celiktutan, O. Avcibas, I.: Blind identification of cell phone cameras. In: Proceedings of SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, San Jose, CA, 29 January–1 February, pp. 1H–1I (2007)Google Scholar
  17. 17.
    Sutthiwan, P., Ye, J., Shi, Y.Q.: An enhanced statistical approach to identifying photorealistic images. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 323–335. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03688-0_28 CrossRefGoogle Scholar
  18. 18.
    Chierchia, G., Parrilli, S., Poggi, G., Verdoliva, L., Sansone, C.: PRNU-based detection of small-size image forgeries. In: International Conference on Digital Signal Processing (DSP), pp. 1–6 (2011)Google Scholar
  19. 19.
    Chierchia, G., Poggi, G., Sansone, C., Verdoliva, L.: A Bayesian-MRF approach for PRNU-based image forgery detection. IEEE Trans. Inf. Forensics Secur. 9(4), 554–567 (2014)CrossRefGoogle Scholar
  20. 20.
    Goljan, M.: Digital camera identification from images –– estimating false acceptance probability. In: Kim, H.-J., Katzenbeisser, S., Ho, Anthony, T.,S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 454–468. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04438-0_38 CrossRefGoogle Scholar
  21. 21.
    Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402 (2012)CrossRefGoogle Scholar
  22. 22.
    Goljan, M., Chen, M., Comesana, P., Fridrich, J.: Effect of compression on sensor-fingerprint based camera identification. In: Proceedings of Electronic Imaging, Media Watermarking, Security Forensics, San Francisco, CA (2016)Google Scholar
  23. 23.
    Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: Compressed fingerprint matching and camera identification via random projections. IEEE Trans. Inf. Forensics Secur. 10(7), 1472–1485 (2015)CrossRefGoogle Scholar
  24. 24.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409, (2013)CrossRefGoogle Scholar
  26. 26.
    Gloe, T., Pfennig, S., Kirchner, M.: Unexpected artefacts in PRNU-based camera identification: a ‘Dresden image database’ case-study. In: Proceedings of ACM Workshop Multimedia Secur. pp. 109–114 (2012)Google Scholar
  27. 27.
    Dresden Image Database, (Technische Universitaet Dresden, Dresden, 2009–2014). Accessed 3 May 2013

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  2. 2.College of Computer and Communication EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations