Skip to main content

Using Benford’s Law Divergence and Neural Networks for Classification and Source Identification of Biometric Images

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10082))

Included in the following conference series:

Abstract

It is obvious that tampering of raw biometric samples is becoming an important security concern. The Benford’s law, which is also called the first digit law has been reported in the forensic literature to be very effective in detecting forged or tampered data. In this paper, the divergence values of Benford’s law are used as input features for a Neural Network for the classification and source identification of biometric images. Experimental analysis shows that the classification and identification of the source of the biometric images can achieve good accuracies between the range of 90.02% and 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harper, W.W.: Fingerprint forgery transferred latent fingerprints. J. Crim. Law Criminol. 28(4), 573–580 (1937)

    Google Scholar 

  2. Iorliam, A., Ho, A.T.S., Poh, N.: Using Benford’s Law to detect JPEG biometric data tampering. Biometrics 2014, London (2014)

    Google Scholar 

  3. Hildebrandt, M., Dittmann, J.: Benford’s Law based detection of latent fingerprint forgeries on the example of artificial sweat printed fingerprints captured by confocal laser scanning microscopes. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, p. 94090A (2015)

    Google Scholar 

  4. Yan, Y., Osadciw, L.A.: Bridging biometrics and forensics. In: Electronic Imaging, International Society for Optics and Photonics, p. 68190Q (2008)

    Google Scholar 

  5. Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system using fingerprints. Proc. IEEE 85(9), 1365–1388 (1997)

    Article  Google Scholar 

  6. Note on CASIA-IrisV1. Biometric Ideal Test. http://biometrics.idealtest.org/dbDetailForUser.do?id=1

  7. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Synthetic fingerprint generation. In: Handbook of fingerprint recognition, pp. 271–302. Springer, London (2009)

    Google Scholar 

  8. Vein Dataset. PUT Vein Database Description. http://biometrics.put.poznan.pl/vein-dataset/

  9. Hildebrandt, M., Sturm, J., Dittmann, J., Vielhauer, C.: Creation of a Public Corpus of contact-less acquired latent fingerprints without privacy implications. In: Decker, B., Dittmann, J., Kraetzer, C., Vielhauer, C. (eds.) CMS 2013. LNCS, vol. 8099, pp. 204–206. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40779-6_19

    Chapter  Google Scholar 

  10. Bartlow, N., Kalka, N., Cukic, B., Ross, A.: Identifying sensors from fingerprint images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 78–84 (2009)

    Google Scholar 

  11. FVC2000. Fingerprint Verification Competition Databases. http://bias.csr.unibo.it/fvc2000/databases.asp

  12. CASIA-FACEV5. Biometric Ideal Test. http://www.idealtest.org/dbDetailForUser.do?id=9

  13. Fu, D., Shi, Y.Q., Su, W.: A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In: Electronic Imaging 2007, International Society for Optics and Photonics, p. 65051L (2007)

    Google Scholar 

  14. Li, X.H., Zhao, Y.Q., Liao, M., Shih, F.Y., Shi, Y.Q.: Detection of tampered region for JPEG images by using mode-based first digit features. EURASIP J. Adv. Sig. Process. 2012(1), 1–10 (2012)

    Article  Google Scholar 

  15. Xu, B., Wang, J., Liu, G., Dai, Y.: Photorealistic computer graphics forensics based on leading digit law. J. Electron. (China) 28(1), 95–100 (2011)

    Article  Google Scholar 

  16. Benford, F.: The law of anomalous numbers. Proc. Am. Philosophical Soc. 78(4), 551–572 (1938)

    MATH  Google Scholar 

  17. Pérez-Gonález, F., Heileman, G.L., Abdallah, C.T.: Benford’s law in image processing. In: 2007 IEEE International Conference on Image Processing, ICIP 2007, vol. 1, pp. 1-405 (2007)

    Google Scholar 

  18. Hill, T.P.: A statistical derivation of the significant-digit law. Stat. Sci. 10(4), 354–363 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Durtschi, C., Hillison, W., Pacini, C.: The effective use of Benford’s law to assist in detecting fraud in accounting data. J. Forensic Account. 5(1), 17–34 (2004)

    Google Scholar 

  20. Acebo, E., Sbert, M.: Benford’s law for natural and synthetic images. In: Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, Eurographics Association, pp. 169–176 (2005)

    Google Scholar 

  21. Jolion, J.M.: Images and Benford’s law. J. Math. Imaging Vis. 14(1), 73–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qadir, G., Zhao, X., Ho, A.T.: Estimating JPEG2000 compression for image forensics using Benford’s law. In: SPIE Photonics Europe, International Society for Optics and Photonics, p. 77230J (2010)

    Google Scholar 

  23. Li, B., Shi, Y.Q., Huang, J.: Detecting doubly compressed JPEG images by using mode based first digit features. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 730–735 (2008)

    Google Scholar 

  24. Golik, P., Doetsch, P., Ney, H.: Cross-entropy vs. squared error training: a theoretical and experimental comparison. In: Interspeech, pp. 1756–1760 (2013)

    Google Scholar 

  25. Panchal, G., Ganatra, A., Kosta, Y.P., Panchal, D.: Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. Int. J. Comput. Theory Eng. 3(2), 332 (2011)

    Article  Google Scholar 

  26. Othman, A.A.: Mixing Biometric Data For Generating Joint Identities and Preserving Privacy. Ph.D. Thesis, West Virginia University (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamo Iorliam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Iorliam, A., Ho, A.T.S., Waller, A., Zhao, X. (2017). Using Benford’s Law Divergence and Neural Networks for Classification and Source Identification of Biometric Images. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53465-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53464-0

  • Online ISBN: 978-3-319-53465-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics