Reliable Pooled Steganalysis Using Fine-Grained Parameter Estimation and Hypothesis Testing

  • Wei HuangEmail author
  • Xianfeng Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


Despite the state-of-the-art steganalysis can detect highly undetectable steganography, it is too unreliable to implement in the real world due to its false alarm rate. In pooled steganalysis scenario, multiple objects are intercepted and a reliable collective decision is required. To control the reliability, the confidence intervals of the detectors’ false rates are estimated as a parameter and hypothesis testing technology is used to determine the threshold of stego rates. In view of the fact that the false rate is vulnerable to some image properties (e.g. image size, and texture complexity), we propose a novel fine-grained scheme where test sets are divided by its texture measure in both parameter estimation and hypothesis testing processes. The demonstration on public image sets shows the proposed scheme achieves higher reliability in most cases. It confirms that the priori knowledge of image properties is conductive to a accurate threshold and reliable decision.


Steganalysis Steganography Parameter estimation Hypothesis testing 



This work was supported by the National Natural Science Foundation of China (Grant No. 61402390), the National Key Technology R&D Program (Grant No. 2014BAH41B01), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA06030600).


  1. 1.
    Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16435-4_13 CrossRefGoogle Scholar
  2. 2.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE Int’l Workshop on Information Forensics and Security (WIFS 2012), pp. 234–239. IEEE Press, New York (2012)Google Scholar
  3. 3.
    Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: ACM IH&MMSec 2013, pp. 59–68. ACM, New York (2013)Google Scholar
  4. 4.
    Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)CrossRefGoogle Scholar
  5. 5.
    Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: IEEE WIFS 2014, pp. 48–53. IEEE Press, New York (2014)Google Scholar
  6. 6.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2001)CrossRefGoogle Scholar
  7. 7.
    Cogranne, R., Sedighi, V., Fridrich, J., Pevný, T.: Is ensemble classifier needed for steganalysis in high-dimensional feature spaces?. In: IEEE WIFS 2015, pp. 1–6. IEEE Press, New York (2015)Google Scholar
  8. 8.
    Ker, A.D.: Batch steganography and pooled steganalysis. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 265–281. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74124-4_18 CrossRefGoogle Scholar
  9. 9.
    Pevný, T., Ker, A.D.: Towards dependable steganalysis. In: Proceedings of Media Watermarking, Security, and Forensics 2015. SPIE, vol. 9409, pp. 94090I–94090I (2015)Google Scholar
  10. 10.
    Ker, A.D.: Perturbation hiding and the batch steganography problem. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 45–59. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88961-8_4 CrossRefGoogle Scholar
  11. 11.
    Böhme, R.: Assessment of steganalytic methods using multiple regression models. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 278–295. Springer, Heidelberg (2005). doi: 10.1007/11558859_21 CrossRefGoogle Scholar
  12. 12.
    Huang, W., Zhao, X.: Novel cover selection criterion for spatial steganography using linear pixel prediction error. Sci. Chin. Inf. Sci. 59(5), 05910301–05910303 (2016)Google Scholar
  13. 13.
    Ker, A.D.: Batch steganography and the threshold game. In: Proceedings of the International Society for Optical Engineering. SPIE, vol. 6505, pp. 650504–650504 (2007)Google Scholar
  14. 14.
    Pevný, T., Fridrich, J.: Multiclass detector of current steganographic methods for JPEG format. IEEE Trans. Inf. Forensics Secur. 3(4), 635–650 (2008)CrossRefGoogle Scholar
  15. 15.
    Ker, A.D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., Pevný, T.: Moving steganography and steganalysis from the laboratory into the real world. In: First ACM Workshop on Information Hiding & Multimedia Security (IH&MMSec 2013), pp. 45–58 (2013)Google Scholar
  16. 16.
    Dabeer, O., Sullivan, K., Madhow, U., Chandrasekaran, S.: Detection of hiding in the least significant bit. IEEE Trans. Sig. Proc. 52(10), 3046–3058 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Qiao, T., Retraint, F., Cogranne, R., Zitzmann, C.: Steganalysis of JSteg algorithm using hypothesis testing theory. EURASIP J. Inf. Secur. 1, 1–16 (2015)Google Scholar
  18. 18.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998). doi: 10.1007/3-540-49380-8_21 CrossRefGoogle Scholar
  19. 19.
    Cogranne, R., Fridrich, J.: Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory. IEEE Trans. Inf. Forensics Secur. 10(12), 2627–2642 (2015)CrossRefGoogle Scholar
  20. 20.
    Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4), 404–413 (1934)CrossRefzbMATHGoogle Scholar
  21. 21.
    Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–117 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Highleyman, W.H.: The design and analysis of pattern recognition experiments. Bell Syst. Tech. J. 41(2), 723–744 (1962)CrossRefGoogle Scholar
  23. 23.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Software SchoolXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations