Advertisement

Speech Authentication and Recovery Scheme in Encrypted Domain

  • Qing Qian
  • Hongxia WangEmail author
  • Sani M. Abdullahi
  • Huan Wang
  • Canghong Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

This paper proposes a self-embedding fragile watermarking scheme in encrypted speech based on hyper-chaotic system and reference sharing mechanism. Hyper-chaotic system is introduced to hide the feature and improve the confidentiality of original speech. Reference sharing mechanism is used to generate watermark for recovering tampered speech area. Combining the encryption and watermarking technologies, the confidentiality and integrity of original speech can be achieved simultaneously. Analysis and experimental results demonstrate that the proposed algorithm can detect and locate the tampered area. Meanwhile, the self-embedding watermark can be extracted to recover the content of tampered speech with high quality. Additionally, the key space is big enough to resist brute-force attack, while the secure keys are sensitive to slight change.

Keywords

Encryption Hyper-chaotic system Fragile watermarking Speech authentication Self-embedding 

Notes

Acknowledgment

This work is supported by the National Natural Science Foundation of China (NSFC) under the grant No. U1536110.

References

  1. 1.
    Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14992-4_13 CrossRefGoogle Scholar
  2. 2.
    Wu, J., Ping, L., Ge, X., Wang, Y., Fu, J.: Cloud storage as the infrastructure of cloud computing. In: International Conference on Intelligent Computing and Cognitive Informatics, pp. 380–383. IEEE Press, Kuala Lumpur (2010)Google Scholar
  3. 3.
    Qian, Q., Wang, H.X., Hu, Y., Zhou, L.N., Li, J.F.: A dual fragile watermarking scheme for speech authentication. Multimedia Tools Appl. 75(21), 1–20 (2015)Google Scholar
  4. 4.
    Wang, H., Zhou, L., Zhang, W., Liu, S.: Watermarking-based perceptual hashing search over encrypted speech. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 423–434. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43886-2_30 Google Scholar
  5. 5.
    Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 7(2), 826–832 (2012)CrossRefGoogle Scholar
  6. 6.
    Mostafa, A., Soliman, N.F., Abdalluh, M., El-samie, F.E.A.: Speech encryption using two dimensional chaotic maps. In: 11th International Computer Engineering Conference, pp. 235–240. IEEE Press, Cairo (2015)Google Scholar
  7. 7.
    Wu, X.: A color image encryption algorithm using the fractional-order hyperchaotic systems. In: 2012 Fifth International Workshop on Chaos-Fractals Theories and Applications (IWCFTA), pp. 196–201. IEEE Press, Dalian (2012)Google Scholar
  8. 8.
    Wang, H., Hempel, M., Peng, D., Wang, W., Sharif, H., Chen, H.H.: Index-based selective audio encryption for wireless multimedia sensor networks. IEEE Trans. Multimedia 12(3), 215–223 (2010)CrossRefGoogle Scholar
  9. 9.
    Liu, Z., Wang, H.: A novel speech content authentication algorithm based on Bessel-CFourier moments. Digit. Signal Proc. 24, 197–208 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, O.T., Liu, C.H.: Content-dependent watermarking scheme in compressed speech with identifying manner and location of attacks. IEEE Trans. Audio Speech Lang. Process. 15(5), 1605–1616 (2007)CrossRefGoogle Scholar
  11. 11.
    Yan, B., Guo, Y.J.: Speech authentication by semi-fragile speech watermarking utilizing analysis by synthesis and spectral distortion optimization. Multimedia Tools Appl. 67(2), 383–405 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Ma, K., Yu, N.: Reversibility improved data hiding in encrypted images. Sig. Process. 94, 118–127 (2014)CrossRefGoogle Scholar
  13. 13.
    Qian, Z., Zhang, X., Wang, S.: Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimedia 16(5), 1486–1491 (2014)CrossRefGoogle Scholar
  14. 14.
    Karim, M.S.A., Wong, K.: Universal data embedding in encrypted domain. Sig. Process. 94, 174–182 (2014)CrossRefGoogle Scholar
  15. 15.
    Dixit, S., Gaikwad, A., Gaikwad, S., Shanwad, S.A., Scholar, U.G.: Public key cryptography based lossless and reversible data hiding in encrypted images. Int. J. Eng. Sci. 6, 3550–3557 (2016)Google Scholar
  16. 16.
    Ma, K.L., Zhang, W., Zhao, X., Yu, N., Li, F.: Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inf. Forensics Secur. 8(3), 553–562 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 7(2), 826–832 (2012)CrossRefGoogle Scholar
  18. 18.
    Cao, X., Du, L., Wei, X., Meng, D., Guo, X.: High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans. Cybern. 46(5), 1132–1243 (2016)CrossRefGoogle Scholar
  19. 19.
    Shen, C., Yu, S., Lu, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 61(3), 854–864 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Wang, S., Qian, Z., Feng, G.: Reference sharing mechanism for watermark self-embedding. IEEE Trans. Image Process. 20(2), 485–495 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kahan, W.: IEEE standard 754 for binary floating-point arithmetic. In: Lecture Notes on the Status of IEEE 754, 94720–1776, 11 (1996)Google Scholar
  22. 22.
    Cowlishaw, M.F.: Decimal floating-point: algorism for computers. In: Proceedings of 16th IEEE Symposium on Computer Arithmetic, pp. 104–111. IEEE Press (2003)Google Scholar
  23. 23.
    EBU, SQAM - Sound Quality Assessment Material. http://sound.media.mit.edu/resources/mpeg4/audio/sqam/
  24. 24.
    Thiede, T., Treurniet, W.C., Bitto, R., Schmidmer, C., Sporer, T., Beerends, J.G., Colomes, C.: PEAQ-The ITU standard for objective measurement of perceived audio quality. J. Audio Eng. Soc. 48(1/2), 3–29 (2000)Google Scholar
  25. 25.
    Liu, Z., Zhang, F., Wang, J., Wang, H., Huang, J.: Authentication and recovery algorithm for speech signal based on digital watermarking. Sig. Process. 123(C), 157–166 (2016)CrossRefGoogle Scholar
  26. 26.
    Chen, F., He, H., Wang, H.: A fragile watermarking scheme for audio detection and recovery. In: Proceeding of International Congress on Image and Signal Processing, pp. 135–138. IEEE Press, Sanya (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qing Qian
    • 1
  • Hongxia Wang
    • 1
    Email author
  • Sani M. Abdullahi
    • 1
  • Huan Wang
    • 1
  • Canghong Shi
    • 1
  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina

Personalised recommendations