Adaptive Steganography Using 2D Gabor Filters and Ensemble Classifiers

  • Yuan BianEmail author
  • Guangming Tang
  • Shuo Wang
  • Zhanzhan Gao
  • Shiyuan Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


In order to preserve the statistical properties of image in all scales and orientations when the embedding changes are constrained to the complicated texture regions, a steganography method is proposed based on 2 dimensional (2D) Gabor filters and Ensemble classifiers. First, we use histogram sequence features of filtered images generated by Gabor filters to describe the texture properties of the image. Then, we design the distortion function using the classification results differences of classifiers between cover and stego. The stego images are used to train the ensemble classifiers using the current popular steganography schemes, such HUGO and S-UNIWARD. Then, the message is embedded using STC (Syndrome Trellis Code). The experimental results show that the proposed scheme can achieve a competitive performance compared with the other steganography schemes HUGO, MVG and S-UNIWARD when using the SRM detection.


Adaptive steganography 2D Gabor filter Ensemble classifiers 


  1. 1.
    Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)CrossRefGoogle Scholar
  2. 2.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE, December 2012Google Scholar
  3. 3.
    Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68. ACM, June 2013Google Scholar
  4. 4.
    Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE, October 2014Google Scholar
  5. 5.
    Gul, G., Kurugollu, F.: A new methodology in steganalysis: breaking highly undetectable steganograpy (HUGO). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 71–84. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_6 CrossRefGoogle Scholar
  6. 6.
    Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)CrossRefGoogle Scholar
  7. 7.
    Kouider, S., Chaumont, M., Puech, W.: Adaptive steganography by oracle (ASO). In: 2013 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, July 2013Google Scholar
  8. 8.
    Song, X., Liu, F., Yang, C., Luo, X., Zhang, Y.: Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 15–23. ACM, June 2015Google Scholar
  9. 9.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  10. 10.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_5 CrossRefGoogle Scholar
  11. 11.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuan Bian
    • 1
    Email author
  • Guangming Tang
    • 1
  • Shuo Wang
    • 1
  • Zhanzhan Gao
    • 1
  • Shiyuan Chen
    • 1
  1. 1.Institute of Information Science and TechnologyZhengzhouChina

Personalised recommendations