Advertisement

Distortion Function for Spatial Image Steganography Based on the Polarity of Embedding Change

  • Zichi WangEmail author
  • Jinpeng Lv
  • Qingde Wei
  • Xinpeng Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

Most of the existing distortion functions for digital images steganography allot a same embedding cost for ±1 embedding change, which should be different intuitively. This paper proposes a general method to distinguish the embedding cost for different polarity of embedding change for spatial images. The fluctuation after pixels are +1 or −1 modified respectively, and the texture of cover image are employed to adjust a given distortion function. After steganography with the adjusted distortion function, the fluctuation around stego pixels become more similar to the fluctuation around their neighbourhoods. This similarity performs less detectable artifacts. Experiment results show that the statistical undetectability of current popular steganographic methods is increased after incorporated the proposed method.

Keywords

Steganography Spatial images Distortion function Polarity 

Notes

Acknowledgment

This work was supported by the Natural Science Foundation of China (61525203, 61472235, and 61502009), the Program of Shanghai Dawn Scholar (14SG36) and Shanghai Academic Research Leader (16XD1401200).

References

  1. 1.
    Ker, A., et al.: Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, New York, NY, USA, pp. 45–58, June 2013Google Scholar
  2. 2.
    Li, B., Tan, S., Wang, M., Huang, J.: Investigation on cost assignment in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 9(2), 1264–1277 (2014)CrossRefGoogle Scholar
  3. 3.
    Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)CrossRefGoogle Scholar
  4. 4.
    Frdrich, J., Soukal, D.: Matrix embedding for large payloads. In: Proceedings of the International Society for Optics and Photonics, San Jose, CA, pp. 60721W–60721W-12, February 2006Google Scholar
  5. 5.
    Zhang, X., Wang, S.: Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10(11), 781–783 (2006)CrossRefGoogle Scholar
  6. 6.
    Zhang, W., Zhang, X., Wang, S.: Maximizing steganographic embedding efficiency by combining hamming codes and wet paper codes. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 60–71. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88961-8_5 CrossRefGoogle Scholar
  7. 7.
    Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)CrossRefGoogle Scholar
  8. 8.
    Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16435-4_13 CrossRefGoogle Scholar
  9. 9.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: Proceedings of the IEEE International Workshop on Information Forensics and Security, Binghamton, NY, USA, pp. 234–239, December 2012Google Scholar
  10. 10.
    Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, New York, NY, USA, pp. 59–68, June 2013Google Scholar
  11. 11.
    Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: Proceedings of the IEEE International Conference on Image Processing, Paris, France, pp. 4206–4210, October 2014Google Scholar
  13. 13.
    Sedighi, V., Fridrich, J., Cogranne, R.: Content-adaptive pentary steganography using the multivariate generalized gaussian cover model. In: Proceedings of the International Society for Optics and Photonics, San Francisco, California, USA, pp. 94090H–94090H-13, March 2015Google Scholar
  14. 14.
    Sedighi, V., Fridrich, J.: Effect of saturated pixels on security of steganographic schemes for digital images. In: Proceedings of the IEEE International Conference on Image Processing, Phoenix, Arizona, USA, pp. 25–28, September 2016Google Scholar
  15. 15.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_5 CrossRefGoogle Scholar
  16. 16.
    Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)CrossRefGoogle Scholar
  17. 17.
    Denemark, T., Fridrich, J., Holub, V.: Further study on the security of S-UNIWARD. In: Proceedings of the SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics, San Francisco, CA, pp. 902805–902805-13, February 2014Google Scholar
  18. 18.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  19. 19.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  20. 20.
    Denemark, T., Fridrich, J.: Improving steganographic security by synchronizing the selection channel. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, New York, NY, USA, pp. 5–14, June 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zichi Wang
    • 1
    Email author
  • Jinpeng Lv
    • 1
  • Qingde Wei
    • 1
  • Xinpeng Zhang
    • 1
  1. 1.School of Communication and Information EngineeringShanghai UniversityShanghaiChina

Personalised recommendations