Separable Multiple Bits Reversible Data Hiding in Encrypted Domain

  • Yan KeEmail author
  • Minqing Zhang
  • Jia Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


This paper proposes a novel scheme of separable multiple bits reversible data hiding in encrypted domain based on LWE (Learning with Errors). Multi-band data could be embedded by recoding the redundancy of ciphertext, which does enhance the capacity of embedding data. With embedded ciphertext, the additional data can be extracted by using data-hiding key, and the original data can be recovered losslessly by using decryption key, the processes of extraction and decryption are separable. By deducing the error probability of the scheme, parameters in the scheme which directly related to the scheme’s correctness is mainly discussed, and reasonable ranges of the parameters are obtained by experiments. When analyzing the security, the probability distribution function of the embedded cipher text is deduced and the statistic features of ciphertext are analyzed, which both proved the embedded data isn’t detective. The proposed scheme is based on encryption process, so it can apply to different kinds of media vehicle. Experimental results have demonstrated that the proposed scheme can not only achieve statistical security without degrading the quality of encryption, but realize that 1bit original data can maximally load multiple-bit additional data in encrypted domain.


Information security Reversible data hiding Public key cryptography LWE Multiple bits data hiding 


  1. 1.
    Barni, M., Kalker, T., Katzenbeisser, S.: Inspiring new research in the field of signal processing in the encrypted domain. IEEE Signal Process. Mag. 30(2), 16 (2013)CrossRefGoogle Scholar
  2. 2.
    Moulin, P., Koetter, R.: Data hiding codes. Proc. IEEE 93(12), 2083–2126 (2005)CrossRefGoogle Scholar
  3. 3.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  4. 4.
    Dragoi, L., Coltuc, D.: Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 23(4), 1779–1790 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caciula, I., Coltuc, D.: Improved control for low bit-rate reversible watermarking. In: IEEE International Conference on Acoustics Speech and Signal Processing, Florence, Italy, pp. 7425–7429 (2014)Google Scholar
  6. 6.
    Zhang, W., Hu, X., Li, X., et al.: Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans. Image Process. 22(7), 2775–2785 (2013)CrossRefGoogle Scholar
  7. 7.
    Jarali, A., Rao, J.: Unique LSB compression data hiding method. Int. J. Emerg. Sci. Eng. 2(3), 17–21 (2013)Google Scholar
  8. 8.
    Zhao, B., Kou, W., Li, H., et al.: Effective watermarking scheme in the encrypted domain for buyer–seller watermarking protocol. Inf. Sci. 180(23), 4672–4684 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lian, S., Liu, Z., Ren, Z., et al.: Commutative encryption and watermarking in video compression. IEEE Trans. Circ. Syst. Video Technol. 17(6), 774–778 (2007)CrossRefGoogle Scholar
  10. 10.
    Cancellaro, M., Battisti, F., Carli, M., et al.: A commutative digital image watermarking and encryption method in the tree structured Haartransform domain. Signal Process. Image Commun. 26(1), 1–12 (2011)CrossRefGoogle Scholar
  11. 11.
    Xiao, Di., Chen, S.: Separable data hiding in encrypted image based on compressive sensing. Electron. Lett. 50(8), 598–600 (2014)Google Scholar
  12. 12.
    Kuribayashi, M., Tanaka, H.: Fingerprinting protocol for images based on additive homomorphic property. IEEE Trans. Image Process. 14(12), 2129–2139 (2005)CrossRefGoogle Scholar
  13. 13.
    Memon, N., Wong, P.W.: A buyer-seller watermarking protocol. IEEE Trans. Image Process. 10(4), 643–649 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, J.H., Wang, C., Zhang, W.M., et al.: A secure image steganographic method in encrypted domain. J. Electron. Inf. Technol. 34(7), 1721–1726 (2012). in ChineseCrossRefGoogle Scholar
  15. 15.
    Zhang, X.: Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 18(4), 255–258 (2011)CrossRefGoogle Scholar
  16. 16.
    Yu, J., Zhu, G., Li, X., Yang, J.: An improved algorithm for reversible data hiding in encrypted image. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2012. LNCS, vol. 7809, pp. 384–394. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40099-5_32 CrossRefGoogle Scholar
  17. 17.
    Li, M., Xiao, D., Peng, Z., et al.: A modified reversible data hiding in encrypted images using random diffusion and accurate prediction. ETRI J. 36(2), 325–328 (2014)CrossRefGoogle Scholar
  18. 18.
    Wu, X., Sun, W.: High-capacity reversible data hiding in encrypted images by prediction error. Signal Process. 104(11), 387–400 (2014)CrossRefGoogle Scholar
  19. 19.
    Qian, Z., Zhang, X., Wang, S.: Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimedia 16(5), 1486–1491 (2014)CrossRefGoogle Scholar
  20. 20.
    Liao, X., Shu, C.: Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Representation 28(4), 21–27 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 7(2), 826–832 (2012)CrossRefGoogle Scholar
  22. 22.
    Regev, O.: On lattices, learning with errors, random linear codes and cryptography. J. ACM 56(6), 34 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Regev, O.: The learning with errors problem (2010).
  24. 24.
    Min-Qing, Z., Yan, K., Ting-Ting, S.: Reversible steganography in encrypted domain based on LWE. J. Electron. Inf. Technol. 38(2), 354–360 (2016). in ChineseGoogle Scholar
  25. 25.
    Zhang, X., Qian, Z., Feng, G., Ren, Y.: Efficient reversible data hiding in encrypted image. J. Vis. Commun. Image Representation. 25(2), 322–328 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Key Laboratory of Network and Information Security Under the Chinese People Armed Police Force, Department of Electronic TechnologyEngineering University of PAPXi’anChina

Personalised recommendations