Reversible Data Hiding for Texture Videos and Depth Maps Coding with Quality Scalability

  • Yuanzhi YaoEmail author
  • Weiming Zhang
  • Nenghai Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


To support 3-D video and free-viewpoint video applications, efficient texture videos and depth maps coding should be addressed. In this paper, a novel reversible data hiding scheme is proposed to integrate depth maps into corresponding texture video bitstreams. At the sender end, the depth video bitstream obtained by depth down-sampling and compression is embedded in residual coefficients of corresponding texture video. The data embedding is implemented by the histogram shifting technique. At the receiver end, the depth maps can be retrieved with scalable quality after data extraction, video decoding and texture-based depth reconstruction. Due to the attractive property of reversible data hiding, the texture video bitstream can be perfectly recovered. Experimental results demonstrate that the proposed scheme can achieve better video rendering quality and coding efficiency compared with existing related schemes.


Reversible data hiding Depth map Depth down-sampling Histogram shifting Texture-based depth reconstruction 



This work was supported in part by the National Natural Science Foundation of China under Grant 61572452, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA06030601, and in part by the China Scholarship Council Program under Grant 201506340006.


  1. 1.
    Alatan, A.A., Yemez, Y., Gudukbay, U., Zabulis, X., Muller, K., Erdem, C.E., Weigel, C., Smolic, A.: Scene representation technologies for 3DTV-a survey. IEEE Trans. Circ. Syst. Video Technol. 17(11), 1587–1605 (2007)CrossRefGoogle Scholar
  2. 2.
    Fehn, C.: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI, pp. 93–104 (2004)Google Scholar
  3. 3.
    Yuan, H., Chang, Y., Huo, J., Yang, F., Lu, Z.: Model-based joint bit allocation between texture videos and depth maps for 3-D video coding. IEEE Trans. Circ. Syst. Video Technol. 21(4), 485–497 (2011)CrossRefGoogle Scholar
  4. 4.
    Kim, W.-S., Ortega, A., Lai, P., Tian, D.: Depth map coding optimization using rendered view distortion for 3D video coding. IEEE Trans. Image Process. 24(11), 3534–3545 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shao, F., Lin, W., Jiang, G., Yu, M.: Low-complexity depth coding by depth sensitivity aware rate-distortion optimization. IEEE Trans. Broadcast. 62(1), 94–102 (2016)CrossRefGoogle Scholar
  6. 6.
    Cao, Y., Zhang, H., Zhao, X., Yu, H.: Covert communication by compressed videos exploiting the uncertainty of motion estimation. IEEE Commun. Lett. 19(2), 203–206 (2015)CrossRefGoogle Scholar
  7. 7.
    Khan, A., Mahmood, M.T., Ali, A., Usman, I., Choi, T.-S.: Hiding depth map of an object in its 2D image: reversible watermarking for 3D cameras. In: Proceedings of International Conference on Consumer Electronics, pp. 1–2 (2009)Google Scholar
  8. 8.
    Tong, X., Shen, G., Xuan, G., Li, S., Yang, Z., Li, J., Shi, Y.Q.: Stereo image coding with histogram-pair based reversible data hiding. In: Proceedings of International Workshop on Digital-Forensics and Watermarking, pp. 201–214 (2014)Google Scholar
  9. 9.
    Wang, W., Zhao, J., Tam, W.J., Speranza, F., Wang, Z.: Hiding depth map into stereo image in JPEG format using reversible watermarking. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 82–85 (2011)Google Scholar
  10. 10.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  11. 11.
    Jung, S.-W.: Lossless embedding of depth hints in JPEG compressed color images. Sig. Process. 122, 39–51 (2016)CrossRefGoogle Scholar
  12. 12.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  13. 13.
    Wang, W., Zhao, J., Tam, W.J., Speranza, F.: Hiding depth information into H.264 compressed video using reversible watermarking. In: Proceedings of ACM Multimedia International Workshop on Cloud-based Multimedia Applications and Services for E-health, pp. 27–31 (2012)Google Scholar
  14. 14.
    Wang, W., Zhao, J.: Hiding depth information in compressed 2D image/video using reversible watermarking. Multimed. Tools Appl. 75(8), 4285–4303 (2016)CrossRefGoogle Scholar
  15. 15.
    Shahid, Z., Puech, W.: Synchronization of texture and depth map by data hiding for 3D H.264 video. In: Proceedings of International Conference on Image Processing, pp. 2773–2776 (2011)Google Scholar
  16. 16.
    Bellifemine, F., Capellino, A., Chimienti, A., Picco, R., Ponti, R.: Statistical analysis of the 2D-DCT coefficients of the differential signal for images. Sig. Process: Image Commun. 4(6), 477–488 (1992)Google Scholar
  17. 17.
    Gormish, M.J., Gill, J.T.: Computation-rate-distortion in transform coders for image compression. In: Proceedings of SPIE Image and Video Processing, pp. 146–152 (1993)Google Scholar
  18. 18.
    Ni, Z., Shi, Y.-Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  19. 19.
    Xu, D., Wang, R.: Efficient reversible data hiding in encrypted H.264/AVC videos. J. Electron. Imaging 23(5), 053022-1–053022-14 (2014)CrossRefGoogle Scholar
  20. 20.
    Yoon, K.-J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 650–656 (2006)CrossRefGoogle Scholar
  21. 21.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of International Conference on Computer Vision, pp. 839–846 (1998)Google Scholar
  22. 22.
    Oh, K.-J., Vetro, A., Ho, Y.-S.: Depth coding using a boundary reconstruction filter for 3-D video systems. IEEE Trans. Circ. Syst. Video Technol. 21(3), 350–359 (2011)CrossRefGoogle Scholar
  23. 23.
    Yao, Y., Zhang, W., Yu, N.: Inter-frame distortion drift analysis for reversible data hiding in encrypted H.264/AVC video bitstreams. Sig. Process. 128, 531–545 (2016)CrossRefGoogle Scholar
  24. 24.
    ITU-T Recommendation: Advanced video coding for generic audiovisual services. ISO/IEC (2012)Google Scholar
  25. 25.
    The H.264/AVC joint model (JM), ver. 10.2.
  26. 26.
  27. 27.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  28. 28.
    Wildeboer, M.O., Yendo, T., Tehrani, M.P., Fujii, T., Tanimoto, M.: Color based depth up-sampling for depth compression. In: Proceedings of Picture Coding Symposium, pp. 170–173 (2010)Google Scholar
  29. 29.
    OpenCV, ver. 2.4.9.
  30. 30.
    Depth estimation view synthesis software.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations