Databases Traceability by Means of Watermarking with Optimized Detection

  • Javier Franco-ContrerasEmail author
  • Gouenou Coatrieux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


In this paper, we propose a robust lossless database watermarking scheme the detection of which is optimized for the traceability of databases merged into, for example, shared data warehouses. We basically aim at identifying a database merged with different other watermarked databases. Based on the modulation of attribute circular histogram’s center of mass, we theoretically prove that the impact of the database mixture on the embedded identifier is equivalent to the addition of a Gaussian noise, the parameters of which can be estimated. From these theoretical results, an optimized watermark detector is proposed. This one offers higher discriminative performance than the classic correlation-based detector. Depending on the modulated attribute, it allows us to detect a database representing at least \(4\%\) of the databases mixture with a detection rate close to \(100\%\). These results have been experimentally verified within the framework of a set of medical databases containing inpatient hospital stay records.


Traceability Watermarking Relational database Information security 



The authors are very grateful to the Department of Medical Information and Archives, CHU Lille; UDSL EA 2694; Univ. Lille Nord de France; F-59000 Lille, France, for the experimental data used in this study.


  1. 1.
    Agrawal, R., Kiernan, J.: Chapter 15 - watermarking relational databases. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Databases, pp. 155–166 (2002)Google Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Barni, M., Bartolini, F., De Rosa, A., Piva, A.: Optimum decoding and detection of multiplicative watermarks. IEEE. Trans. Signal Process. 51(4), 1118–1123 (2003)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 452–465 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Coatrieux, G., Chazard, E., Beuscart, R., Roux, C.: Lossless watermarking of categorical attributes for verifying medical data base integrity. In: Proceedings of the IEEE EMBC, pp. 8195–8198. IEEE (2011)Google Scholar
  6. 6.
    De Vleeschouwer, C., Delaigle, J.F., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. Multimed. 5(1), 97–105 (2003)CrossRefGoogle Scholar
  7. 7.
    Franco-Contreras, J., Coatrieux, G.: Robust watermarking of relational databases with ontology-guided distortion control. IEEE Trans. Inf. Forensics Secur. 10(9), 1939–1952 (2015)CrossRefGoogle Scholar
  8. 8.
    Franco-Contreras, J., Coatrieux, G., Cuppens-Boulahia, N., Cuppens, F., Roux, C.: Robust lossless watermarking of relational databases based on circular histogram modulation. IEEE Trans. Inf. Forensics Secur. 9(3), 397–410 (2014)CrossRefGoogle Scholar
  9. 9.
    Harvard Business Review Analytic Services: The evolution of decision making: How leading organizations are adopting a data-driven culture (2012)Google Scholar
  10. 10.
    Kamran, M., Suhail, S., Farooq, M.: A robust, distortion minimizing technique for watermarking relational databases using once-for-all usability constraints. IEEE Trans. Knowl. Data Eng. 25(12), 2694–2707 (2013)CrossRefGoogle Scholar
  11. 11.
    Kuribayashi, M.: A simple tracing algorithm for binary fingerprinting code under averaging attack. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, (IH&MMSec 2013), NY, USA, pp. 3–12. ACM, New York (2013)Google Scholar
  12. 12.
    Lafaye, J., Gross-Amblard, D., Constantin, C., Guerrouani, M.: Watermill: an optimized fingerprinting system for databases under constraints. IEEE Trans. Knowl. Data Eng. 20, 532–546 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data using fragile watermarks. In: Proceedings of ACM Workshop on Digital Rights Management (DRM 2004), pp. 73–82 (2004)Google Scholar
  14. 14.
    Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: schemes and specialties. IEEE Trans. Dependable Secure Comput. 2(1), 34–45 (2005)CrossRefGoogle Scholar
  15. 15.
    McNickle, M.: Top. 10 data security breaches in 2012. in Healthcare Finance News. Accessed 21 July 2016
  16. 16.
    Ng, T., Garg, H.: Maximum-likelihood detection in DWT domain image watermarking using Laplacian modeling. IEEE Signal Process. Lett. 12(4), 285–288 (2005)CrossRefGoogle Scholar
  17. 17.
    Quinn, B.: Phase-only information loss. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3982–3985, March 2010Google Scholar
  18. 18.
    Schaathun, H.: On error-correcting fingerprinting codes for use with watermarking. Multimed. Syst. 13(5–6), 331–344 (2008)CrossRefGoogle Scholar
  19. 19.
    Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using optimization-based techniques. IEEE Trans. Knowl. Data Eng. 20, 116–129 (2008)CrossRefGoogle Scholar
  20. 20.
    Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data. IEEE Trans. Knowl. Data Eng. 16(12), 509–1525 (2004)CrossRefGoogle Scholar
  21. 21.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC 2003), pp. 116–125 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.WaTooPlouzanéFrance
  2. 2.Institut Mines-Télécom, Télécom Bretagne, Inserm U1101 LaTIM, Technopôle Brest Iroise CS 83818Brest Cedex 3France
  3. 3.Université Européenne de BretagneRennesFrance

Personalised recommendations