Advertisement

Multiple Watermarking Using Multilevel Quantization Index Modulation

  • Bingwen Feng
  • Jian Weng
  • Wei Lu
  • Bei PeiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

In this paper, a type of multilevel Quantization Index Modulation (QIM) algorithms is proposed by adopting the concept of multilevel nested lattice coding. We first introduce the multilevel scalar-QIM and then extend it to the vector case by using lattice-QIM. The lattice definition and nested lattices construction are specified such that the constructed nested lattices is suitable for multilevel lattice-QIM. The proposed scheme embeds multiple watermark sequences into the same host signal via several embedding rounds. Each round of embedding uses quantizers of different radii, and thus provides different robustness. As a result, the embedded watermark sequences can be used for various purposes. Benefiting from the scalable robustness and adjustable embedding rate, the proposed multilevel QIM presents good performances and supports a wide range of applications.

Keywords

Multiple watermarking Robustness Quantization Index Modulation (QIM) Multilevel nested lattices 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), the Fundamental Research Funds for the Central Universities (No. 16LGJC83), and the Key Lab of Information Network Security, Ministry of Public Security.

References

  1. 1.
    Ourique, F., Licks, V., Jordan, R., Pérez-González, F.: Angle QIM: a novel watermark embedding scheme robust against amplitude scaling distortions. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), vol. 2, p. ii-797. IEEE (2005)Google Scholar
  2. 2.
    Pérez-González, F., Mosquera, C., Barni, M., Abrardo, A.: Rational dither modulation: a high-rate data-hiding method invariant to gain attacks. IEEE Trans. Signal Process. 53(10), 3960–3975 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Xiao, J., Wang, Y.: Multiple watermarking based on spread transform. In: 2006 8th International Conference on Signal Processing (2006)Google Scholar
  4. 4.
    Kalantari, N.K., Ahadi, S.M.: A logarithmic quantization index modulation for perceptually better data hiding. IEEE Trans. Image Process. 19(6), 1504–1517 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tong, L., Zheng-ding, Q.: The survey of digital watermarking-based image authentication techniques. In: 2002 6th International Conference on Signal Processing, vol. 2, pp. 1556–1559. IEEE (2002)Google Scholar
  6. 6.
    Wenyin, Z., Shih, F.Y.: Semi-fragile spatial watermarking based on local binary pattern operators. Opt. Commun. 284(16), 3904–3912 (2011)CrossRefGoogle Scholar
  7. 7.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security: theory and practice. IEEE Trans. Signal Process. 53(10), 3976–3987 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wheeler, G.E., Safavi-Naini, R., Sheppard, N.P.: Weighted segmented digital watermarking. In: Cox, I.J., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 89–100. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31805-7_8 CrossRefGoogle Scholar
  9. 9.
    Hana, O., Hela, M., Kamel, H.: A robust multiple watermarking scheme based on the DWT. In: International Multi-conference on Systems, Signals & Devices, pp. 1–6 (2013)Google Scholar
  10. 10.
    Liu, C.C., Chen, W.Y.: Multiple-watermarking scheme for still images using the discrete cosine transform and modified code division multiple-access techniques. Opt. Eng. 45(7), 921–932 (2006)Google Scholar
  11. 11.
    Zhang, L., Xiao, J.W., Luo, J.Y., Zheng, H.M.: A robust multiple watermarking based on DWT and SVD. In: Proceedings of the 12th ACM International Conference on Multimedia, New York, 10–16 October 2004, pp. 424–427 (2004)Google Scholar
  12. 12.
    Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moulin, P., KoeTter, R.: Data-hiding codes. Proc. IEEE 93(12), 2083–2126 (2005)CrossRefGoogle Scholar
  14. 14.
    Li, Q., Cox, I.J.: Using perceptual models to improve fidelity and provide resistance to valumetric scaling for quantization index modulation watermarking. IEEE Trans. Inf. Forensics Secur. 2(2), 127–139 (2007)CrossRefGoogle Scholar
  15. 15.
    Feng, B., Lu, W., Sun, W., Liang, Z., Liu, J.: Blind watermarking based on adaptive lattice quantization index modulation. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 239–249. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31960-5_20 CrossRefGoogle Scholar
  16. 16.
    Bardyn, D., Dooms, A., Dams, T., Schelkens, P.: Comparative study of wavelet based lattice QIM techniques and robustness against AWGN and JPEG attacks. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 39–53. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03688-0_7 CrossRefGoogle Scholar
  17. 17.
    Sarkar, A., Manjunath, B.S.: Double embedding in the quantization index modulation framework. In: IEEE International Conference on Image Processing, pp. 3653–3656 (2009)Google Scholar
  18. 18.
    Ly, H.D., Liu, T., Blankenship, Y.: Security embedding codes. IEEE Trans. Inf. Forensics Secur. 7(1), 148–159 (2011)CrossRefGoogle Scholar
  19. 19.
    Sloane, N.J., Conway, J., et al.: Sphere Packings, Lattices and Groups, vol. 290. Springer, New York (1999)zbMATHGoogle Scholar
  20. 20.
    Zamir, R., Shamai, S., Erez, U.: Nested linear/lattice codes for structured multiterminal binning. IEEE Trans. Inf. Theory 48(6), 1250–1276 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bindel, D., Demmel, J., Kahan, W., Marques, O.: On computing givens rotations reliably and efficiently. ACM Trans. Math. Softw. (TOMS) 28(2), 206–238 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Forney, G.D.: Multidimensional constellations. II. Voronoi constellations. IEEE J. SEL. AREAS COMMUN. 7(6), 941–958 (1989)CrossRefzbMATHGoogle Scholar
  23. 23.
    Eggers, J.J., Bäuml, R., Tzschoppe, R., Girod, B.: Scalar costa scheme for information embedding. IEEE Trans. Signal Process. 51(4), 1003–1019 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pérez-González, F., Balado, F., Martin, J.R.H.: Performance analysis of existing and new methods for data hiding with known-host information in additive channels. IEEE Trans. Signal Process. 51(4), 960–980 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, Z., Bovik, A.C.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 1–14 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Information Science and TechnologyJinan UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory of Information Security Technology, School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.Key Lab of Information Network SecurityMinistry of Public SecurityShanghaiChina

Personalised recommendations