Advertisement

On the Robustness of Visual Cryptographic Schemes

  • Sabyasachi Dutta
  • Partha Sarathi RoyEmail author
  • Avishek Adhikari
  • Kouichi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

In this paper, we consider the robustness of a special type of secret sharing scheme known as visual cryptographic scheme in which the secret reconstruction is done visually without any mathematical computation unlike other secret sharing schemes. Initially, secret sharing schemes were considered with the presumption that the corrupted participants involved in a protocol behave in a passive manner and submit correct shares during the reconstruction of secret. However, that may not be the case in practical situations. A minimal robust requirement, when a fraction of participants behave maliciously and submit incorrect shares, is that, the set of all shares, some possibly corrupted, can recover the correct secret. Though the concept of robustness is well studied for secret sharing schemes, it is not at all common in the field of visual cryptography. We, for the first time in the literature of visual cryptography, formally define the concept of robustness and put forward (2, n)-threshold visual cryptographic schemes that are robust against deterministic cheating. In the robust secret sharing schemes it is assumed that the number of cheaters is always less than the threshold value so that the original secret is not recovered by the coalition of cheaters only. In the current paper, We consider three different scenarios with respect to the number of cheaters controlled by a centralized adversary. We first consider the existence of only one cheater in a (2, n)-threshold VCS so that the secret image is not recovered by the cheater. Next we consider two different cases, with number of cheaters being greater than 2, with honest majority and without honest majority.

Keywords

Basis matrices Robustness Deterministic cheating Visual cryptography 

References

  1. 1.
    Adhikari, A.: Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images. Des. Codes Crypt. 73(3), 865–895 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adhikari, A., Dutta, T.K., Roy, B.: A new black and white visual cryptographic scheme for general access structures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 399–413. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30556-9_31 CrossRefGoogle Scholar
  3. 3.
    Adhikari, A., Bose, M.: A new visual cryptographic scheme using latin squares. IEICE Trans. Fundam. E87–A(5), 1998–2002 (2004)Google Scholar
  4. 4.
    Adhikari, A., Kumar, D, Bose, M., Roy, B.: Applications of partially balanced and balanced incomplete block designs in developing visual cryptographic schemes. IEICE Trans. Fundam. Japan E-90A(5), 949–951 (2007)Google Scholar
  5. 5.
    Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-visual cryptography scheme. Des. Codes Crypt. 71(1), 153–162 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC 1988, pp. 1–10. ACM (1988)Google Scholar
  7. 7.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979, pp. 313–317 (1979)Google Scholar
  8. 8.
    Blundo, C., Darco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography. SIAM J. Discrete Math. 16(2), 224–261 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_13 CrossRefGoogle Scholar
  10. 10.
    Droste, S.: New results on visual cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996). doi: 10.1007/3-540-68697-5_30 Google Scholar
  11. 11.
    Dutta, S., Adhikari, A.: XOR based non-monotone t-\((k,n)^*\)-visual cryptographic schemes using linear algebra. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 230–242. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21966-0_17 CrossRefGoogle Scholar
  12. 12.
    Dutta, S., Rohit, R.S., Adhikari, A.: Constructions and analysis of some efficient \(t\)-\((k, n)^*\)-visual cryptographic schemes using linear algebraic techniques. Accepted at the J. Des. Codes Crypt. 80(1), 165–196 (2016). doi: 10.1007/s10623-015-0075-5 (Springer, US)
  13. 13.
    Horng, G., Chen, T.H., Tsai, D.S.: Cheating in visual cryptography. Des. Codes Crypt. 38(2), 219–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hu, C., Tzeng, W.: Cheating prevention in visual cryptography. IEEE Trans. Image Process. 16(1), 36–45 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, F., Wu, C.K., Lin, X.J.: Cheating immune visual cryptography scheme. IET Inf. Secur. 5(1), 51–59 (2011)CrossRefGoogle Scholar
  16. 16.
    Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi: 10.1007/BFb0053419 Google Scholar
  17. 17.
    De Prisco, R., De Santis, A.: Cheating immune threshold visual secret sharing. Comput. J. 53(9), 1485–1496 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC 1989, pp. 73–85. ACM (1989)Google Scholar
  19. 19.
    Shamir, A.: How to share a secret. Comm. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shyu, S.J., Chen, M.C.: Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans. Inf. Forensics Secur. 6(3(pt. 2)), 960–969 (2011)CrossRefGoogle Scholar
  21. 21.
    Tsai, D.S., Chen, T.H., Horng, G.: A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recogn. 40(8), 2356–2366 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xiaotian, W., Sun, W.: Random grid-based visual secret sharing for general access structures with cheat-preventing ability. J. Syst. Softw. 85(5), 1119–1134 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sabyasachi Dutta
    • 1
  • Partha Sarathi Roy
    • 2
    Email author
  • Avishek Adhikari
    • 1
  • Kouichi Sakurai
    • 2
  1. 1.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia
  2. 2.Faculty of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations