Advertisement

Collusive Attacks to Partition Authentication Visual Cryptography Scheme

  • Yawei RenEmail author
  • Feng Liu
  • Wen Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

In order to preventing cheating attack, partition authentication visual cryptography scheme (PAVCS) was proposed, in which each authentication pattern can be revealed on the stacked result of the corresponding partitions of any two shares. Without needing extra share, a PAVCS not only accomplishes sharing a secret image, but also provides mutual authentication of every two shares. In this paper, we propose two types of collusive attacks to (kn)-PAVCS. The aim of the first type of attack is to destroy the integrity of the secret image revealed by victims, while the second type of attack belongs to cheating attack. Experimental results and theoretical analysis show that the two types of collusive attacks are successful attacks. Furthermore, we put forward the suggestion to devise partition authentication visual cryptography scheme for resisting the proposed two types of collusive attacks.

Keywords

Visual cryptography scheme Visual secret sharing Cheating prevention visual cryptography scheme (CPVCS) Partition authentication visual cryptography scheme (PAVCS) Collusive attack 

Notes

Acknowledgements

Many thanks to the anonymous reviewers for their valuable comments. This work was supported by NSFC No. 61671448, the “Strategic Priority Research Program” of the Chinese Academy of Sciences grant No. XDA06010701, the National Key R&D Program of China with No. 2016YFB0800100 and the Scientific Research Project of Beijing Municipal Educational Committee grant No. 71E1610972.

References

  1. 1.
    Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi: 10.1007/BFb0053419 Google Scholar
  2. 2.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.: Extended capabilities for visual cryptography. Theor. Comput. Sci. 250(1–2), 143–161 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Liu, F., Wu, C.K.: Embedded extended visual cryptography schemes. IEEE Trans. Inf. Forensics Secur. 6(2), 307–322 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, R.Z., Hsu, S.F.: Tagged visual cryptography. IEEE Signal Process. Lett. 18(11), 627–630 (2011)CrossRefGoogle Scholar
  6. 6.
    Ou, D., Wu, X., Dai, L., Sun, W.: Improved tagged visual cryptograms by using random grids. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 79–94. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43886-2_6 Google Scholar
  7. 7.
    Ren, Y., Liu, F., Lin, D., Feng, R., Wang, W.: A new construction of tagged visual cryptography scheme. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 433–445. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31960-5_35 CrossRefGoogle Scholar
  8. 8.
    Hou, Y.C., Quan, Z.Y.: Progressive visual cryptography with unexpanded shares. IEEE Trans. Circ. Syst. Video Technol. 21(11), 1760–1764 (2011)CrossRefGoogle Scholar
  9. 9.
    Yan, X.H., Wang, S., Niu, X.M.: Threshold construction from specific cases in visual cryptography without the pixel expansion. Signal Process. 105, 389–398 (2014)CrossRefGoogle Scholar
  10. 10.
    Yang, C.N., Wu, C.C., Lin, Y.C., Kim, C.: Constructions and properties of general (k, n) block-based progressive visual cryptography. ETRI J. 37, 979–989 (2015)CrossRefGoogle Scholar
  11. 11.
    Shyu, S.J.: Image encryption by random grids. Pattern Recogn. 40, 1014–1031 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, T., Tsao, K.: Threshold visual secret sharing by random grids. J. Syst. Softw. 84, 1197–1208 (2011)CrossRefGoogle Scholar
  13. 13.
    Guo, T., Liu, F., Wu, C.K.: Threshold visual secret sharing by random grids with improved contrast. J. Syst. Softw. 86(8), 2094–2109 (2013)CrossRefGoogle Scholar
  14. 14.
    Wu, X., Sun, W.: Improving the visual quality of random grid-based visual secret sharing. Signal Process. 93, 977–995 (2013)CrossRefGoogle Scholar
  15. 15.
    Horng, G., Chen, T.H., Tsai, D.S.: Cheating in visual cryptography. Design. Code. Crypt. 38, 219–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yang, C.N., Laih, C.S.: Some new types of visual secret sharing schemes. In: Proceedings of National Computer Symposium, vol. 3, pp. 260–268 (1999)Google Scholar
  17. 17.
    Prisco, R., Santis, A.: Cheating immune (2, n)-threshold visual secret sharing. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 216–228. Springer, Heidelberg (2006). doi: 10.1007/11832072_15 CrossRefGoogle Scholar
  18. 18.
    Tsai, D.S., Chen, T.H., Horng, G.: A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recogn. 40(8), 2356–2366 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Trans. Image Process. 16(1), 36–45 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    De Prisco, R., De Santis, A.: Cheating immune threshold visual secret sharing. Comput. J. 53(9), 1485–1496 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, F., Wu, C.K., Lin, X.J.: Cheating immune visual cryptography scheme. IET Inform. Secur. 5, 51–59 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, Y.C., Horng, G., Tsai, D.S.: Comment on “cheating prevention in visual cryptograph”. IEEE Trans. Image Process. 21(7), 3319–3323 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, Y.C., Tsai, D.S., Horng, G.: A new authentication based cheating prevention scheme in Naor-Shamir’s visual cryptography. J. Vis. Commun. Image R. 23, 1225–1233 (2012)CrossRefGoogle Scholar
  24. 24.
    Lin, C.H., Chen, T.H., Wu, Y.T., Tsao, K.H., Lin, K.S.: Multi-factor cheating prevention in visual secret sharing by hybrid codebooks. J. Vis. Commun. Image R. 25, 1543–1557 (2014)CrossRefGoogle Scholar
  25. 25.
    Lin, P.Y., Wang, R.Z., Chang, Y.J., Fang, W.P.: Prevention of cheating in visual cryptography by using coherent image. Inf. Sci. 301, 61–74 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Information ManagementBeijing Information Science and Technology UniversityBeijingChina
  3. 3.University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations