Advertisement

Privacy Monitor

  • Teng GuoEmail author
  • Feng Liu
  • Wen Wang
  • BingTao Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

This paper first proposes a design for privacy monitor that only users at the right angle viewpoint can see the screen clearly, while users at a large enough deviated angle viewpoint cannot see any useful information on the screen. The space where users from that viewpoint can see the screen is called visible space in this paper. Then the visible space of the proposed privacy monitor is completely characterized for IPS screen. By adjusting the distance between the two liquid crystal layers, the size of the visible space can be controlled in such a way that larger distance will result in a smaller visible space, while smaller distance will result in a larger visible space.

Keywords

Privacy monitor Visible space Screen 

Notes

Acknowledgements

This work was supported by the “Fundamental Research Funds for the Central Universities” grant No. 3262016T47 and the NSFC grant No. 61671448 and the key project of NFSC grant No. U1536207 and the “Strategic Priority Research Program” of the Chinese Academy of Sciences No. XDA06010701. Besides, many thanks to the handling editor and anonymous reviewers for their valuable comments that help us to improve this paper.

References

  1. 1.
    Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi: 10.1007/BFb0053419 Google Scholar
  2. 2.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 176–185. Springer, Heidelberg (1997). doi: 10.1007/BFb0045084 CrossRefGoogle Scholar
  3. 3.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theor. Comput. Sci. 240(2), 471–485 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bose, M., Mukerjee, R.: Optimal (2, n) visual cryptographic schemes. Des. Codes Crypt. 40, 255–267 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bose, M., Mukerjee, R.: Optimal (k, n) visual cryptographic schemes for general k. Des. Codes Crypt. 55, 19–35 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guo, T., Liu, F., Wu, C.K., Ren, Y.W., Wang, W.: On \((k, n)\) visual cryptography scheme with \(t\) essential parties. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 56–68. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-04268-8_4 CrossRefGoogle Scholar
  7. 7.
    Guo, T., Liu, F., Wu, C.K.: Threshold visual secret sharing by random grids with improved contrast. J. Syst. Softw. 86, 2094–2109 (2013)CrossRefGoogle Scholar
  8. 8.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12(4), 261–289 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Blundo, C., De Bonis, A., De Santis, A.: Improved schemes for visual cryptography. Des. Codes Crypt. 24, 255–278 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-visual cryptography scheme. Des. Codes Crypt. 71, 153–162 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, F., Guo, T., Wu, C.K., Qian, L.N.: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Commun. Image Represent. 23, 331–342 (2012)CrossRefGoogle Scholar
  13. 13.
    D’Arco, P., Prisco, R.: Secure two-party computation: a visual way. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 18–38. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-04268-8_2 CrossRefGoogle Scholar
  14. 14.
    Shyu, S.J., Jiang, H.W.: General constructions for threshold multiple-secret visual cryptographic schemes. IEEE Trans. Inf. Forensics Secur. 8(5), 733–743 (2013)CrossRefGoogle Scholar
  15. 15.
    Shyu, S.J., Chen, M.C.: Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans. Inf. Forensics Secur. 6(3), 960–969 (2011)CrossRefGoogle Scholar
  16. 16.
    Biham, E., Itzkovitz, A.: Visual cryptography with polarization. In: The Dagstuhl seminar on Cryptography, and the RUMP Session of CRYPTO 1998, September 1997Google Scholar
  17. 17.
    Tuyls, P., Hollmann, H.D.L., Lint, J.H.V., Tolhuizen, L.: A polarisation based visual crypto system and its secret sharing schemes (2002). http://eprint.iacr.org
  18. 18.
    Tuyls, P., Hollmann, H.D.L., Lint, J.H.V., Tolhuizen, L.: XOR-based visual cryptography schemes. Des. Codes Crypt. 37, 169–186 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schrijen, G., Tuyls, P., Kevenaar, T., Johnson, M.: Secure visual message communication method and device. In: US20050117748 (2004)Google Scholar
  20. 20.
    Evans, A., Tillin, M., Walton, E.: Display having particular polarisation modifying layer. In: US7400377 (2008)Google Scholar
  21. 21.
    Liu, F., Guo, T., Wu, C.K., Yang, C.-N.: Flexible visual cryptography scheme without distortion. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 211–227. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32205-1_18 CrossRefGoogle Scholar
  22. 22.
    Rajput, S.K., Nishchal, N.K.: Fresnel domain nonlinear optical image encryption scheme based on Gerchberg—Saxton phase-retrieval algorithm. Appl. Opt. 53(3), 418–425 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Information Science and TechnologyUniversity of International RelationsBeijingChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations