Advertisement

A Multi-purpose Image Counter-anti-forensic Method Using Convolutional Neural Networks

  • Jingjing Yu
  • Yifeng Zhan
  • Jianhua Yang
  • Xiangui KangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)

Abstract

During the past decade, image forensics has made rapid progress due to the growing concern of image content authenticity. In order to remove or conceal the traces that forensics based on, some farsighted forgers take advantage of so-called anti-forensics to make their forgery more convincing. To rebuild the credibility of forensics, many countermeasures against anti-forensics have been proposed. This paper presents a multi-purpose approach to detect various anti-forensics based on the architecture of Convolutional Neural Networks (CNN), which can automatically extract features and identify the forged types. Our model can detect various image anti-forensics both in binary and multi-class decision effectively. Experimental results show that the proposed method performs well for multiple well-known image anti-forensic methods.

Keywords

Convolutional Neural Networks Counter anti-forensics Multi-purpose 

References

  1. 1.
    Stamm, M.M.C., Wu, M., Liu, K.J.R.: Information forensics: an overview of the first decade. In: IEEE Access, vol. 1, pp. 167–200, May 2013Google Scholar
  2. 2.
    Stamm, M.M.C., Tjoa, S.K., Lin, W.S., et al.: Anti-forensics of JPEG compression. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1694–1697, March 2010Google Scholar
  3. 3.
    Valenzise, M.G., Tagliasacchi, M., Tubaro, S.: Revealing the traces of JPEG compression anti-forensics. IEEE Trans. Inf. Forensics Secur. 8(2), 335–349 (2013)CrossRefGoogle Scholar
  4. 4.
    Stamm, M.M.C., Liu, K.J.R.: Anti-forensics of digital image compression. IEEE Trans. Inf. Forensics Secur. 6(3), 1050–1065 (2011)CrossRefGoogle Scholar
  5. 5.
    Popescu, A.A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kirchner, M.M., Böhme, R.: Hiding traces of resampling in digital images. IEEE Trans. Inf. Forensics Secur. 3(4), 582–592 (2008)CrossRefGoogle Scholar
  7. 7.
    Stamm, M.M.C., Liu, K.J.R.: Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 5(3), 492–506 (2010)CrossRefGoogle Scholar
  8. 8.
    Stamm, M.M.C., Liu, K.J.R.: Blind forensics of contrast enhancement in digital images. In: Proceedings of IEEE International Conference on Image Processing, San Diego, CA, pp. 3112–3115, October 2008Google Scholar
  9. 9.
    Cao, G.G., Zhao, Y., Ni, R., Tian, H.: Anti-forensics of contrast enhancement in digital images. In: Proceedings of ACM Workshop Multimedia and Security, pp. 25–34 (2010)Google Scholar
  10. 10.
    Kwok, C.-W., Au, O.C., Chui, S.-H.: Alternative anti-forensics method for contrast enhancement. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 398–410. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32205-1_32 CrossRefGoogle Scholar
  11. 11.
    Valenzise, G.G., Tagliasacchi, M., Tubaro, S.: Revealing the traces of JPEG compression anti-forensics. IEEE Trans. Inf. Forensics Secur. 8(2), 335–349 (2013)CrossRefGoogle Scholar
  12. 12.
    Yuan, H.H.: Blind forensics of median filtering in digital images. IEEE Trans. Inf. Forensics Secur. 6(4), 1335–1345 (2011)CrossRefGoogle Scholar
  13. 13.
    Kirchner, M.M., Fridrich, J.: On detection of median filtering in digital images. In: Memon, N.D., Dittmann, J., Alattar, A.M., Delp, E.J. (Eds.) Media Forensics and Security II, part of the IS&T-SPIE Electronic Imaging Symposium, Proceedings, vol. 7541 of SPIE Proceedings, San Jose, CA, USA, 18–20 January 2010, p. 754110, SPIE (2010)Google Scholar
  14. 14.
    Dang-Nguyen, D.D.T., Gebru, I.D., Conotter, V., et al.: Counter-forensics of median filtering. In: 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 260–265, September 2013Google Scholar
  15. 15.
    Wu, Z.Z.H., Stamm, M.C., Liu, K.J.R.: Anti-forensics of median filtering. In: Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, pp. 3043–3047, Vancouver, Canada, May 2013Google Scholar
  16. 16.
    Simonyan, K.K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)Google Scholar
  17. 17.
    Krizhevsky, A.A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  18. 18.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24178-9_5 CrossRefGoogle Scholar
  19. 19.
    Lecun, Y.Y., BoUou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  20. 20.
    Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (2010)Google Scholar
  22. 22.
    Jiang, Y.Y., Zeng, H., Kang, X., et al.: The game of countering JPEG anti-forensics based on the noise level estimation. In: Proceedings of the Asian-Pacific Signal and Information Processing Association Annual Submit Conference (APSIPA ASC) (2013)Google Scholar
  23. 23.
    Zeng, H.H., Qin, T., Kang, X., et al.: Countering anti-forensics of median filtering. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2723–2727 (2014)Google Scholar
  24. 24.
    Peng, A.A., Zeng, H., Kang, X., et al.: Countering anti-forensics of image resampling. In: Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), pp. 3595–3599, September 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jingjing Yu
    • 1
  • Yifeng Zhan
    • 1
  • Jianhua Yang
    • 1
  • Xiangui Kang
    • 1
    Email author
  1. 1.Guangdong Key Lab of Information Security, School of Data and Computer ScienceSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations