Skip to main content

Abstract

Adenovirus (Ad) vectors are one of the most commonly used classes of vectors being used in gene therapy clinical trials. However, vector-induced toxicity remains a significant barrier to safe, high-dose systemic therapy with Ad vectors. This review will describe what is known about the mechanisms of Ad-induced toxicity after administration of vector by the intravenous route, as well as how these toxicities can be mitigated. Given the hepatotropic nature of many commonly used Ad serotypes, the liver is a key site of virus-induced toxicity. Both innate and adaptive immunity contribute to hepatotoxicity. Intravenous delivery of Ad can also induce other rapid innate toxicities, including thrombocytopenia, systemic inflammation, fever and shock. Recent progress in understanding Ad biology has enabled improvements in vector safety and gene delivery efficiency in animal models, including genetic and chemical modification of the Ad vector itself, new ways to administer vector and pre-treatment with drugs that suppress innate and adaptive immune responses.

In: Gene Transfer Toxicity (2016) N. Brunetti-Pierri, ed. (Springer-Humana).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 1953;84(3):570–3.

    Google Scholar 

  2. Stephen SL, Montini E, Sivanandam VG, Al-Dhalimy M, Kestler HA, Finegold M, Grompe M, Kochanek S. Chromosomal integration of adenoviral vector DNA in vivo. J Virol. 2010.

    Google Scholar 

  3. The Journal of Gene Medicine Clinical Trial Site. http://www.wiley.com/legacy/wileychi/genmed/clinical/. 2016. Reference Type: Electronic Citation

  4. Chen RF, Lee CY. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int Rev Immunol. 2014;33(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  5. Di Paolo NC, Shayakhmetov DM. The analysis of innate immune response to adenovirus using antibody arrays. Methods Mol Biol. 2014;1089:133–41.

    Article  PubMed  CAS  Google Scholar 

  6. Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther. 2014;25(4):265–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shayakhmetov DM, Di Paolo NC, Mossman KL. Recognition of virus infection and innate host responses to viral gene therapy vectors. Mol Ther. 2010;18(8):1422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khare R, Chen CY, Weaver EA, Barry MA. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther. 2011;11(4):241–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol. 2000;81(Pt 11):2605–9.

    Article  CAS  PubMed  Google Scholar 

  10. Di Paolo NC, van Rooijen N, Shayakhmetov DM. Redundant and synergistic mechanisms control the sequestration of blood-born adenovirus in the liver. Mol Ther. 2009;17(4):675–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R, Chen SJ, Varnavski AN, LeClair C, Raper SE, Wilson JM. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther. 2001;3(5 Pt 1):708–22.

    Article  CAS  PubMed  Google Scholar 

  12. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, Barsoum J, Fawell SE. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001;3(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  13. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther. 1997;8(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B, Tazelaar J, Wilson JM. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther. 2001;3(5 Pt 1):697–707.

    Article  CAS  PubMed  Google Scholar 

  15. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175–86.

    Article  CAS  PubMed  Google Scholar 

  16. Ziegler RJ, Li C, Cherry M, Zhu Y, Hempel D, van Rooijen N, Ioannou YA, Desnick RJ, Goldberg MA, Yew NS, Cheng SH. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease. Hum Gene Ther. 2002;13(8):935–45.

    Article  CAS  PubMed  Google Scholar 

  17. Hardonk MJ, Dijkhuis FW, Hulstaert CE, Koudstaal J. Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. J Leukoc Biol. 1992;52(3):296–302.

    CAS  PubMed  Google Scholar 

  18. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 1997;71(11):8798–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther. 2003;7(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  20. Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 1997;71(1):624–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu Z, Smith JS, Tian J, Byrnes AP. Induction of shock after intravenous injection of adenovirus vectors: a critical role for platelet-activating factor. Mol Ther. 2010;18(3):609–16.

    Article  CAS  PubMed  Google Scholar 

  22. Morrissey RE, Horvath C, Snyder EA, Patrick J, Collins N, Evans E, MacDonald JS. Porcine toxicology studies of SCH 58500, an adenoviral vector for the p53 gene. Toxicol Sci. 2002;65(2):256–65.

    Article  CAS  PubMed  Google Scholar 

  23. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther. 2004;15:35–46.

    Article  CAS  PubMed  Google Scholar 

  24. Hackett NR, El Sawy T, Lee LY, Silva I, O’Leary J, Rosengart TK, Crystal RG. Use of quantitative TaqMan real-time PCR to track the time-dependent distribution of gene transfer vectors in vivo. Mol Ther. 2000;2(6):649–56.

    Article  CAS  PubMed  Google Scholar 

  25. Warner AE, Brain JD. The cell biology and pathogenic role of pulmonary intravascular macrophages. Am J Physiol. 1990;258(2 Pt 1):L1–12.

    CAS  PubMed  Google Scholar 

  26. Warner AE. Pulmonary intravascular macrophages. Role in acute lung injury. Clin Chest Med. 1996;17(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  27. Carlisle RC, Di Y, Cerny AM, Sonnen AF, Sim RB, Green NK, Subr V, Ulbrich K, Gilbert RJ, Fisher KD, Finberg RW, Seymour LW. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood. 2009;113(9):1909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seiradake E, Henaff D, Wodrich H, Billet O, Perreau M, Hippert C, Mennechet F, Schoehn G, Lortat-Jacob H, Dreja H, Ibanes S, Kalatzis V, Wang JP, Finberg RW, Cusack S, Kremer EJ. The cell adhesion molecule “CAR” and sialic acid on human erythrocytes influence adenovirus in vivo biodistribution. PLoS.Pathog. 2009;5(1):e1000277.

    Google Scholar 

  29. Snoeys J, Lievens J, Wisse E, Jacobs F, Duimel H, Collen D, Frederik P, De Geest B. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Ther. 2007;14:604–12.

    Article  CAS  PubMed  Google Scholar 

  30. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15(17):1193–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lievens J, Snoeys J, Vekemans K, Van Linthout S, De Zanger R, Collen D, Wisse E, De Geest B. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther. 2004;11(20):1523–31.

    Article  CAS  PubMed  Google Scholar 

  32. Pande K, Ueda R, Machemer T, Sathe M, Tsai V, Brin E, Delano MJ, van Rooijen N, McClanahan TK, Talmadge JE, Moldawer LL, Phillips JH, LaFace DM. Cancer-induced expansion and activation of CD11b+ Gr-1+ cells predispose mice to adenoviral-triggered anaphylactoid-type reactions. Mol Ther. 2009;17(3):508–15.

    Article  CAS  PubMed Central  Google Scholar 

  33. Chang SW, Ohara N. Chronic biliary obstruction induces pulmonary intravascular phagocytosis and endotoxin sensitivity in rats. J Clin Invest. 1994;94(5):2009–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith JS, Tian J, Muller J, Byrnes AP. Unexpected pulmonary uptake of adenovirus vectors in animals with chronic liver disease. Gene Ther. 2004;11:431–8.

    Article  CAS  PubMed  Google Scholar 

  35. Smith JS, Tian J, Lozier JN, Byrnes AP. Severe pulmonary pathology after intravenous administration of vectors in cirrhotic rats. Mol Ther. 2004;9(6):932–41.

    Article  CAS  PubMed  Google Scholar 

  36. Dehring DJ, Wismar BL. Intravascular macrophages in pulmonary capillaries of humans. Am Rev Respir Dis. 1989;139(4):1027–9.

    Article  CAS  PubMed  Google Scholar 

  37. Schneberger D, Aharonson-Raz K, Singh B. Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L498–503.

    Article  CAS  PubMed  Google Scholar 

  38. Lantto T, Luostarinen M, Vorne M. Clinical significance of lung uptake in liver scanning. Nuklearmedizin. 1986;25(1):15–8.

    CAS  PubMed  Google Scholar 

  39. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol. 2002;109(4):658–68.

    Article  CAS  PubMed  Google Scholar 

  40. Appledorn DM, Kiang A, McBride A, Jiang H, Seregin S, Scott JM, Stringer R, Kousa Y, Hoban M, Frank MM, Amalfitano A. Wild-type adenoviruses from groups A-F evoke unique innate immune responses, of which HAd3 and SAd23 are partially complement dependent. Gene Ther. 2008;15(12):885–901.

    Article  CAS  PubMed  Google Scholar 

  41. Hartman ZC, Appledorn DM, Serra D, Glass O, Mendelson TB, Clay TM, Amalfitano A. Replication-attenuated human adenoviral type 4 vectors elicit capsid dependent enhanced innate immune responses that are partially dependent upon interactions with the complement system. Virology. 2008;374:453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiedner G, Bloch W, Hertel S, Johnston M, Molojavyi A, Dries V, Varga G, van Rooijen N, Kochanek S. A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther. 2003;14(17):1631–41.

    Article  CAS  PubMed  Google Scholar 

  43. Stone D, Liu Y, Li ZY, Tuve S, Strauss R, Lieber A. Comparison of adenoviruses from species B, C, E, and F after intravenous delivery. Mol Ther. 2007;15(12):2146–53.

    Article  CAS  PubMed  Google Scholar 

  44. Machemer T, Engler H, Tsai V, Lee S, Cannon-Carlson S, Voloch M, Schluep T, Ravindran S, Vellekamp G, Brin E, Cornell D, Sutjipto S, Wen SF, Horn M, van Rooijen N, Maneval D, Hutchins B, LaFace D. Characterization of hemodynamic events following intravascular infusion of recombinant adenovirus reveals possible solutions for mitigating cardiovascular responses. Mol Ther. 2005;12(2):254–63.

    Article  CAS  PubMed  Google Scholar 

  45. Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002;9(12):979–86.

    Article  CAS  PubMed  Google Scholar 

  46. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM. Platelet-activating factor and related lipid mediators. Annu Rev Biochem. 2000;69:419–45.

    Article  CAS  PubMed  Google Scholar 

  47. Peavy RD, Metcalfe DD. Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol. 2008;8(4):310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klabunde RE, Anderson DE. Obligatory role of nitric oxide in platelet-activating factor-induced microvascular leakage. Eur J Pharmacol. 2000;404(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  49. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med. 2005;11(11):1167–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iannacone M, Sitia G, Narvaiza I, Ruggeri ZM, Guidotti LG. Antiplatelet drug therapy moderates immune-mediated liver disease and inhibits viral clearance in mice infected with a replication-deficient adenovirus. Clin Vaccine Immunol. 2007;14(11):1532–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, Furth EE, Propert KJ, Robinson MB, Magosin S, Simoes H, Speicher L, Hughes J, Tazelaar J, Wivel NA, Wilson JM, Batshaw ML. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther. 2002;13(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  52. Varnavski AN, Calcedo R, Bove M, Gao G, Wilson JM. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther. 2005;12(5):427–36.

    Article  CAS  PubMed  Google Scholar 

  53. Cichon G, Schmidt HH, Benhidjeb T, Loser P, Ziemer S, Haas R, Grewe N, Schnieders F, Heeren J, Manns MP, Schlag PM, Strauss M. Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med. 1999;1(5):360–71.

    Article  CAS  PubMed  Google Scholar 

  54. Lozier JN, Csako G, Mondoro TH, Krizek DM, Metzger ME, Costello R, Vostal JG, Rick ME, Donahue RE, Morgan RA. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther. 2002;13(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  55. Wolins N, Lozier J, Eggerman TL, Jones E, Aguilar-Cordova E, Vostal JG. Intravenous administration of replication-incompetent adenovirus to rhesus monkeys induces thrombocytopenia by increasing in vivo platelet clearance. Br J Haematol. 2003;123(5):903–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hofherr SE, Mok H, Gushiken FC, Lopez JA, Barry MA. Polyethylene glycol modification of adenovirus reduces platelet activation, endothelial cell activation, and thrombocytopenia. Hum Gene Ther. 2007;18:837–48.

    Article  CAS  PubMed  Google Scholar 

  57. Jin YY, Yu XN, Qu ZY, Zhang AA, Xing YL, Jiang LX, Shang L, Wang YC. Adenovirus type 3 induces platelet activation in vitro. Mol Med Rep. 2014;9(1):370–4.

    CAS  PubMed  Google Scholar 

  58. Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D. Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood. 2007;109(7):2832–9.

    CAS  PubMed  Google Scholar 

  59. Eggerman TL, Mondoro TH, Lozier JN, Vostal JG. Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation. Hum Gene Ther. 2002;13(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gupalo E, Buriachkovskaia L, Othman M. Human platelets express CAR with localization at the sites of intercellular interaction. Virol J. 2011;8:456.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shimony N, Elkin G, Kolodkin-Gal D, Krasny L, Urieli-Shoval S, Haviv YS. Analysis of adenoviral attachment to human platelets. Virol J. 2009;6:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell. 1993;73(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  63. Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988;71(4):831–43.

    CAS  PubMed  Google Scholar 

  64. Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, Sherer AD, Markovits JE, Lyons RM, Kaleko M, Stevenson SC. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther. 2003;14(17):1595–604.

    Article  CAS  PubMed  Google Scholar 

  65. Stone D, Liu Y, Shayakhmetov D, Li ZY, Ni S, Lieber A. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol. 2007;81(9):4866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies and complement. J Virol. 2008;82:11705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Q, Zaiss AK, Colarusso P, Patel K, Haljan G, Wickham TJ, Muruve DA. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum Gene Ther. 2003;14(7):627–43.

    Article  CAS  PubMed  Google Scholar 

  68. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424.

    Article  CAS  PubMed  Google Scholar 

  69. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wroblewski F. The clinical significance of transaminase activities of serum. Am J Med. 1959;27:911–23.

    Article  CAS  PubMed  Google Scholar 

  71. Alemany R, Curiel DT. CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther. 2001;8(17):1347–53.

    Article  CAS  PubMed  Google Scholar 

  72. Christ M, Louis B, Stoeckel F, Dieterle A, Grave L, Dreyer D, Kintz J, Ali HD, Lusky M, Mehtali M. Modulation of the inflammatory properties and hepatotoxicity of recombinant adenovirus vectors by the viral E4 gene products. Hum Gene Ther. 2000;11(3):415–27.

    Article  CAS  PubMed  Google Scholar 

  73. Engler H, Machemer T, Philopena J, Wen SF, Quijano E, Ramachandra M, Tsai V, Ralston R. Acute hepatotoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-alpha. Virology. 2004;328(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  74. Lozier JN, Metzger ME, Donahue RE, Morgan RA. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood. 1999;94(12):3968–75.

    CAS  PubMed  Google Scholar 

  75. Muruve DA, Barnes MJ, Stillman IE, Libermann TA. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther. 1999;10(6):965–76.

    Article  CAS  PubMed  Google Scholar 

  76. Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol. 2007;35(6):757–66.

    Article  CAS  PubMed  Google Scholar 

  77. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T, Clark SA, Ross PJ, Meulenbroek RA, Maelandsmo GM, Parks RJ. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol. 2004;78(11):5966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manickan E, Smith JS, Tian J, Eggerman TL, Lozier JN, Muller J, Byrnes AP. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther. 2006;13(1):108–17.

    Article  CAS  PubMed  Google Scholar 

  79. Di Paolo NC, Doronin K, Baldwin LK, Papayannopoulou T, Shayakhmetov DM. The transcription factor IRF3 triggers “defensive suicide” necrosis in response to viral and bacterial pathogens. Cell Rep. 2013;3(6):1840–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. He JQ, Katschke KJ Jr, Gribling P, Suto E, Lee WP, Diehl L, Eastham-Anderson J, Ponakala A, Komuves L, Egen JG, van Lookeren CM. CRIg mediates early Kupffer cell responses to adenovirus. J Leukoc Biol. 2013;93:301–6.

    Article  CAS  PubMed  Google Scholar 

  81. Smith JS, Xu Z, Tian J, Stevenson SC, Byrnes AP. Interaction of systemically delivered adenovirus vectors with Kupffer cells in mouse liver. Hum Gene Ther. 2008;19(5):547–54.

    Article  CAS  PubMed  Google Scholar 

  82. Di Paolo NC, Baldwin LK, Irons EE, Papayannopoulou T, Tomlinson S, Shayakhmetov DM. IL-1alpha and Complement cooperate in triggering local neutrophilic inflammation in response to adenovirus and eliminating virus-containing cells. PLoS.Pathog. 2014;10(3):e1004035.

    Google Scholar 

  83. Morral N, O’Neal W, Zhou H, Langston C, Beaudet A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors. Hum Gene Ther. 1997;8(10):1275–86.

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Ertl HC, Wilson JM. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994;1(5):433–42.

    Article  CAS  PubMed  Google Scholar 

  85. Yang Y, Jooss KU, Su Q, Ertl HC, Wilson JM. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 1996;3(2):137–44.

    PubMed  Google Scholar 

  86. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994;91(10):4407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang Y, Xiang Z, Ertl HC, Wilson JM. Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc Natl Acad Sci U S A. 1995;92(16):7257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sullivan DE, Dash S, Du H, Hiramatsu N, Aydin F, Kolls J, Blanchard J, Baskin G, Gerber MA. Liver-directed gene transfer in non-human primates. Hum Gene Ther. 1997;8(10):1195–206.

    Article  CAS  PubMed  Google Scholar 

  89. Kolls JK, Lei D, Odom G, Nelson S, Summer WR, Gerber MA, Shellito JE. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors. Hum Gene Ther. 1996;7(4):489–97.

    Article  CAS  PubMed  Google Scholar 

  90. Lei D, Lehmann M, Shellito JE, Nelson S, Siegling A, Volk HD, Kolls JK. Nondepleting anti-CD4 antibody treatment prolongs lung-directed E1-deleted adenovirus-mediated gene expression in rats. Hum Gene Ther. 1996;7(18):2273–9.

    Article  CAS  PubMed  Google Scholar 

  91. Engelhardt JF, Yang Y, Stratford-Perricaudet LD, Allen ED, Kozarsky K, Perricaudet M, Yankaskas JR, Wilson JM. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet. 1993;4(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  92. Jooss K, Ertl HC, Wilson JM. Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol. 1998;72(4):2945–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dedieu JF, Vigne E, Torrent C, Jullien C, Mahfouz I, Caillaud JM, Aubailly N, Orsini C, Guillaume JM, Opolon P, Delaere P, Perricaudet M, Yeh P. Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses. J Virol. 1997;71(6):4626–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao GP, Yang Y, Wilson JM. Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J Virol. 1996;70(12):8934–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Q, Greenburg G, Bunch D, Farson D, Finer MH. Persistent transgene expression in mouse liver following in vivo gene transfer with a delta E1/delta E4 adenovirus vector. Gene Ther. 1997;4(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  96. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, Graham FL, Kochanek S, Beaudet AL. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther. 1998;9(18):2709–16.

    Article  CAS  PubMed  Google Scholar 

  97. Oka K, Pastore L, Kim IH, Merched A, Nomura S, Lee HJ, Merched-Sauvage M, Arden-Riley C, Lee B, Finegold M, Beaudet A, Chan L. Long-term stable correction of low-density lipoprotein receptor-deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor. Circulation. 2001;103(9):1274–81.

    Article  CAS  PubMed  Google Scholar 

  98. Brunetti-Pierri N, Ng T, Iannitti D, Cioffi W, Stapleton G, Law M, Breinholt J, Palmer D, Grove N, Rice K, Bauer C, Finegold M, Beaudet A, Mullins C, Ng P. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther. 2013;24(8):761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brunetti-Pierri N, Stapleton GE, Law M, Breinholt J, Palmer DJ, Zuo Y, Grove NC, Finegold MJ, Rice K, Beaudet AL, Mullins CE, Ng P. Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther. 2009;17(2):327–33.

    Article  CAS  PubMed  Google Scholar 

  100. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA, Zhou H, Parks RJ, Velji R, Aguilar-Cordova E, Wadsworth S, Graham FL, Kochanek S, Carey KD, Beaudet AL. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A. 1999;96(22):12816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G, Wilson JM, Batshaw ML. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.

    Article  CAS  PubMed  Google Scholar 

  102. Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K, Recio A, Knox L, Wilson JM, Albelda SM, Kaiser LR. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9(7):1083–92.

    Article  CAS  PubMed  Google Scholar 

  103. Cartmell T, Southgate T, Rees GS, Castro MG, Lowenstein PR, Luheshi GN. Interleukin-1 mediates a rapid inflammatory response after injection of adenoviral vectors into the brain. J Neurosci. 1999;19(4):1517–23.

    CAS  PubMed  Google Scholar 

  104. Cheng C, Gall JG, Kong WP, Sheets RL, Gomez PL, King CR, Nabel GJ. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells. PLoS.Pathog. 2007;3(2):e25.

    Google Scholar 

  105. Kato N. Pyrogenicity of human adenoviruses. J Gen Virol. 2000;81(Pt 11):2611–6.

    Article  CAS  PubMed  Google Scholar 

  106. Hukkanen RR, Liggitt HD, Murnane RD, Frevert CW. Systemic inflammatory response syndrome in nonhuman primates culminating in multiple organ failure, acute lung injury, and disseminated intravascular coagulation. Toxicol Pathol. 2009;37(6):799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Levi M, van der Poll T. Disseminated intravascular coagulation: a review for the internist. Intern Emerg Med. 2013;8(1):23–32.

    Article  PubMed  Google Scholar 

  108. Varnavski AN, Zhang Y, Schnell M, Tazelaar J, Louboutin JP, Yu QC, Bagg A, Gao GP, Wilson JM. Preexisting immunity to adenovirus in rhesus monkeys fails to prevent vector-induced toxicity. J Virol. 2002;76(11):5711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Barouch DH, Kik SV, Weverling GJ, Dilan R, King SL, Maxfield LF, Clark S, Ng’ang’a D, Brandariz KL, Abbink P, Sinangil F, de, BG, Gray GE, Roux S, Bekker LG, Dilraj A, Kibuuka H, Robb ML, Michael NL, Anzala O, Amornkul PN, Gilmour J, Hural J, Buchbinder SP, Seaman, MS, Dolin R, Baden LR, Carville A, Mansfield KG, Pau MG, Goudsmit J. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine. 2011;29(32):5203–9.

    Google Scholar 

  110. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.

    Article  CAS  PubMed  Google Scholar 

  111. Thorner AR, Vogels R, Kaspers J, Weverling GJ, Holterman L, Lemckert AA, Dilraj A, McNally LM, Jeena PM, Jepsen S, Abbink P, Nanda A, Swanson PE, Bates AT, O’Brien KL, Havenga MJ, Goudsmit J, Barouch DH. Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa. J Clin Microbiol. 2006;44(10):3781–3.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Juillard V, Villefroy P, Godfrin D, Pavirani A, Venet A, Guillet JG. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol. 1995;25(12):3467–73.

    Article  CAS  PubMed  Google Scholar 

  113. Mack CA, Song WR, Carpenter H, Wickham TJ, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart T, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther. 1997;8(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  114. Vlachaki MT, Hernandez-Garcia A, Ittmann M, Chhikara M, Aguilar LK, Zhu X, The BS, Butler EB, Woo S, Thompson TC, Barrera-Saldana H, Aguilar-Cordova E. Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Mol Ther. 2002;6(3):342–8.

    Article  CAS  PubMed  Google Scholar 

  115. Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses. 2010;2(9):1886–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shashkova EV, May SM, Barry MA. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents. Virology. 2009;394(2):311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaufmann JK, Nettelbeck DM. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol Med. 2012;18(7):365–76.

    Article  CAS  PubMed  Google Scholar 

  118. Breidenbach M, Rein DT, Wang M, Nettelbeck DM, Hemminki A, Ulasov I, Rivera AR, Everts M, Alvarez RD, Douglas JT, Curiel DT. Genetic replacement of the adenovirus shaft fiber reduces liver tropism in ovarian cancer gene therapy. Hum Gene Ther. 2004;15(5):509–18.

    Article  CAS  PubMed  Google Scholar 

  119. Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol. 2004;78(10):5368–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Koizumi N, Yamaguchi T, Kawabata K, Sakurai F, Sasaki T, Watanabe Y, Hayakawa T, Mizuguchi H. Fiber-modified adenovirus vectors decrease liver toxicity through reduced IL-6 production. J Immunol. 2007;178(3):1767–73.

    Article  CAS  PubMed  Google Scholar 

  121. Khare R, May SM, Vetrini F, Weaver EA, Palmer D, Rosewell A, Grove N, Ng P, Barry MA. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer. Mol Ther. 2011;19(7):1254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haisma HJ, Boesjes M, Beerens AM, van der Strate BW, Curiel DT, Pluddemann A, Gordon S, Bellu AR. Scavenger receptor A: a new route for adenovirus 5. Mol Pharm. 2009;6(2):366–74.

    Article  CAS  PubMed  Google Scholar 

  123. Khare R, Reddy VS, Nemerow GR, Barry MA. Identification of adenovirus serotype 5 hexon regions that interact with scavenger receptors. J Virol. 2012;86(4):2293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D, Ng P, Brunetti-Pierri N. SR-A and SREC-I are kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther. 2013;21(4):767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Haisma HJ, Kamps JA, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol. 2008;89(Pt 5):1097–105.

    Article  CAS  PubMed  Google Scholar 

  126. Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther. 2008;16(1):16–29.

    Article  CAS  PubMed  Google Scholar 

  127. De Geest B, Snoeys J, Linthout SV, Lievens J, Collen D. Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther. 2005;16(12):1439–51.

    Article  PubMed  Google Scholar 

  128. Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005;11(1):66–79.

    Article  CAS  PubMed  Google Scholar 

  129. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A, Pastore L. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther. 2005;12(7):579–87.

    Article  CAS  PubMed  Google Scholar 

  130. Green NK, Herbert CW, Hale SJ, Hale AB, Mautner V, Harkins R, Hermiston T, Ulbrich K, Fisher KD, Seymour LW. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 2004;11(16):1256–63.

    Article  CAS  PubMed  Google Scholar 

  131. Prill JM, Espenlaub S, Samen U, Engler T, Schmidt E, Vetrini F, Rosewell A, Grove N, Palmer D, Ng P, Kochanek S, Kreppel F. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells. Mol Ther. 2011;19:83–92.

    Article  CAS  PubMed  Google Scholar 

  132. Prill JM, Subr V, Pasquarelli N, Engler T, Hoffmeister A, Kochanek S, Ulbrich K, Kreppel F. Traceless bioresponsive shielding of adenovirus hexon with HPMA copolymers maintains transduction capacity in vitro and in vivo. PLoS.One. 2014;9(1):e82716.

    Google Scholar 

  133. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 2004;11(8):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brunetti-Pierri N, Palmer DJ, Mane V, Finegold M, Beaudet AL, Ng P. Increased hepatic transduction with reduced systemic dissemination and proinflammatory cytokines following hydrodynamic injection of helper-dependent adenoviral vectors. Mol Ther. 2005;12(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  135. Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ, Beaudet AL, Leland MM, Mullins CE, Ng P. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther. 2007;15(4):732–40.

    Article  CAS  PubMed  Google Scholar 

  136. Seregin SS, Appledorn DM, McBride AJ, Schuldt NJ, Aldhamen YA, Voss T, Wei J, Bujold M, Nance W, Godbehere S, Amalfitano A. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol Ther. 2009;17(4):685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Otake K, Ennist DL, Harrod K, Trapnell BC. Nonspecific inflammation inhibits adenovirus-mediated pulmonary gene transfer and expression independent of specific acquired immune responses. Hum Gene Ther. 1998;9(15):2207–22.

    Article  CAS  PubMed  Google Scholar 

  138. Adesanya MR, Redman RS, Baum BJ, O’Connell BC. Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands. Hum Gene Ther. 1996;7(9):1085–93.

    Article  CAS  PubMed  Google Scholar 

  139. Sterman DH, Molnar-Kimber K, Iyengar T, Chang M, Lanuti M, Amin KM, Pierce BK, Kang E, Treat J, Recio A, Litzky L, Wilson JM, Kaiser LR, Albelda SM. A pilot study of systemic corticosteroid administration in conjunction with intrapleural adenoviral vector administration in patients with malignant pleural mesothelioma. Cancer Gene Ther. 2000;7(12):1511–8.

    Article  CAS  PubMed  Google Scholar 

  140. Lochmuller H, Petrof BJ, Allen C, Prescott S, Massie B, Karpati G. Immunosuppression by FK506 markedly prolongs expression of adenovirus-delivered transgene in skeletal muscles of adult dystrophic [mdx] mice. Biochem Biophys Res Commun. 1995;213(2):569–74.

    Article  CAS  PubMed  Google Scholar 

  141. Vilquin JT, Guerette B, Kinoshita I, Roy B, Goulet M, Gravel C, Roy R, Tremblay JP. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther. 1995;6(11):1391–401.

    Article  CAS  PubMed  Google Scholar 

  142. Jooss K, Yang Y, Wilson JM. Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum Gene Ther. 1996;7(13):1555–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Byrnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Harmon, A.W., Byrnes, A.P. (2017). Adenovirus Vector Toxicity. In: Brunetti-Pierri, N. (eds) Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-53457-2_3

Download citation

Publish with us

Policies and ethics