Skip to main content

Laboratory Aspect of IVM Treatment

  • Chapter
  • First Online:
  • 782 Accesses

Abstract

IVM treatment requires more intensive work in laboratory in order to produce viable embryos for transfer. The source of immature will affect directly the success rate of IVM treatment. It is important to identify the immature oocytes under dissecting microscope during immature oocyte retrieval, because the shape of cumulus–oocyte complexes (COCs) with immature oocyte is quite different from mature oocyte. Immature COCs can be cultured in different maturation media supplemented with hormones and growth factors for maturation. In vitro-matured oocytes can be inseminated by IVF or ICSI method, and the fertilized zygotes can be cultured to blastocyst stage depending on the number of immature oocytes retrieved. There is no real evidence to prove that IVM of oocytes causes more aneuploidy embryos and epigenetic or imprinting disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocrinol Rev. 1996;17:121–55.

    Article  CAS  Google Scholar 

  2. Durinzi KL, Saniga EM, Lanzendorf SE. The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995;63:404–6.

    Article  CAS  PubMed  Google Scholar 

  3. Tsuji K, Sowa M, Nakano R. Relationship between human oocyte maturation and different follicular sizes. Biol Reprod. 1985;32:413–7.

    Article  CAS  PubMed  Google Scholar 

  4. Cha KY, Do BR, Chi HJ, Yoon TK, Choi DH, Koo JJ, Ko JJ. Viability of human follicular oocytes collected from unstimulated ovaries and matured and fertilized in vitro. Reprod Fertil Devop. 1992;4:695–701.

    Article  Google Scholar 

  5. Smith LC, Olivera-Angel M, Groome NP, Bhatia B, Price CA. Oocyte quality in small antral follicles in the presence or absence of a large dominant follicle in cattle. J Reprod Fertil. 1996;106:193–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chian RC, Chung JT, Downey BF, Tan SL. Maturational and developmental competence of immature oocytes retrieved from ovaries at different phases of folliculogenesis: bovine model study. Reprod Biomed Online. 2002;4:129–34.

    Article  Google Scholar 

  7. Chian RC, Buckett WM, Tan SL. In-vitro maturation of human oocytes. Reprod Biomed Online. 2004;8:148–66.

    Article  PubMed  Google Scholar 

  8. Chian RC, Lim JH, Tan SL. State of the art in in-vitro oocyte maturation. Curr Opin Obstet Gynecol. 2004;16:211–9.

    Article  PubMed  Google Scholar 

  9. Fadini R, Dal Canto MB, Renzini MM, Brambillasca F, Comi R, Fumaqalli D, Lain M, De Ponti E. Predictive factors in in-vitro maturation in unstimulated women with normal ovaries. Reprod Biomed Online. 2009;18:251–61.

    Google Scholar 

  10. Fadini R, Dal Canto MB, Mignini Renzini M, Brambillasca F, Comi R, Fumaqalli D, Lain M, Merola M, Milani R, De Ponti E. Effect of different gonadotropin priming on IVM of oocytes from women with normal ovaries: a prospective randomized study. Reprod Biomed Online. 2009;19:343–51.

    Google Scholar 

  11. Fadini R, Comi R, Mignini Renzini M, Coticchio G, Crippa M, De Ponti E, Dal Canto M. Anti-Mullerian hormone as a predictive marker for the selection of women for oocyte in vitro maturation treatment. J Assist Reprod Genet. 2011;28:501–8.

    Google Scholar 

  12. Trounson A, Anderiesz C, Jones GM, Kausche A, Lolatgis N, Wood C. Oocyte maturation. Hum Reprod. 1998;13(Suppl 3):52–62.

    Article  CAS  PubMed  Google Scholar 

  13. Chian RC, Tan SL. Maturational and developmental competence of immature human oocytes matured in vitro. Reprod Biomed Online. 2002;5:125–32.

    Article  CAS  PubMed  Google Scholar 

  14. Rose-Hellekant TA, Libersky-Williamson EA, Bavister BD. Energy substrates and amino acids provided during in vitro maturation of bovine oocytes alter acquisition of developmental competence. Zygote. 1998;6:285–94.

    Article  CAS  PubMed  Google Scholar 

  15. Chung JT, Tan SL, Chian RC. Effect of glucose on bovine oocyte maturation and subsequent fertilization and early embryonic development in vitro. Biol Reprod. 2002;66(suppl):177.

    Google Scholar 

  16. Gwatkin RBL, Haidri AA. Requirements for the maturation of hamster oocytes in vitro. Exp Cell Res. 1973;76:1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Bae IH, Foote RH. Utilization of glutamine for energy and protein synthesis by cultured rabbit follicular oocytes. Exp Cell Res. 1975;90:432–6.

    Article  CAS  PubMed  Google Scholar 

  18. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58:560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leese HJ, Barton AM. Pyruvate and glucose uptake by mouse ova and preimplantational embryos. J Reprod Fertil. 1984;72:9–13.

    Article  CAS  PubMed  Google Scholar 

  20. Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234:231–6.

    Article  CAS  PubMed  Google Scholar 

  21. Haekwon K, Schuetz AW. Regulation of nuclear membrane assembly and maintenance during in vitro maturation of mouse oocytes: role of pyruvate and protein synthesis. Cell Tiss Res. 1991;265:105–12.

    Article  Google Scholar 

  22. Gandolfi F, Milanesi E, Pocar P, Luciano AM, Brevini TA, Acocella F, Lauria A, Armstrong DT. Comparative analysisof calf and cow oocytes during in vitro maturation. Mol Reprod Dev. 1998;49:168–75.

    Article  CAS  PubMed  Google Scholar 

  23. Geshi M, Takenouchi N, Yamauchi N, Nagai T. Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells. Biol Reprod. 2000;63:1730–4.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng P, Wang H, Bavister BD, Ji W. Maturation of rhesus monkey oocytes in chemically defined culture media and their functional assessment by IVF and embryo development. Hum Reprod. 2001;16:300–5.

    Article  CAS  PubMed  Google Scholar 

  25. Brinster RL. Studies on the development of mouse embryos in vitro. II. The effect of energy source. J Exp Zool. 1965;158:59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brinster RL. Studies on the development of mouse embryos in vitro. IV. Interaction of energy source. J Reprod Fertil. 1965;10:227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mastoianni L, Wallach RC. Effect of ovulation and early gestation on oviduct secretion in the rabbit. Am J Physiol. 1961;200:815–8.

    Google Scholar 

  28. Cross PC, Brinster RL. The sensitivity of one-cell mouse embryos to pyruvate and lactate. Exp Cell Res. 1973;77:57–62.

    Article  CAS  PubMed  Google Scholar 

  29. Brown JJG, Whittingham DG. The role of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice in vitro. Development. 1991;112:99–105.

    CAS  PubMed  Google Scholar 

  30. Brinster RL. Uptake and incorporation of amino acids by the preimplantation mouse embryos. J Reprod Fertil. 1971;27:329–38.

    Article  CAS  PubMed  Google Scholar 

  31. Krisher RL, Bavister BD. Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence. Mol Reprod Dev. 1999;53:19–26.

    Article  CAS  PubMed  Google Scholar 

  32. Mouatassim SEL, Hazout A, Bellec V, Menezo Y. Glocose metabolism during the final stage of human oocyte maturation: genetic expression of hexokinase, glucose phosphate isomerase and phosphofructokinase. Zygote. 1999;7:45–50.

    Article  PubMed  Google Scholar 

  33. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on cATP levels and meiotic control in the isolated mouse oocyte. Develop Biol. 1995;167:502–12.

    Article  CAS  PubMed  Google Scholar 

  34. Downs SM. Regulation of G2/M transition in rodent oocytes. Mol Reprod Dev. 2010;77:566–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cekleniak NA, Combelle CMH, Ganez DA, Fung J, Albertini DF, Racowsky C. A novel system for in vitro maturation of human oocytes. Fertil Steril. 2001;75:1185–93.

    Article  CAS  PubMed  Google Scholar 

  36. Ka HH, Sawai K, Wang WH, Im KS, Niwa K. Amino acids in mammalian medium and presence of cumulus cells at fertilization promote male pronulear formation in porcine oocytes matured and penetrated in vitro. Biol Reprod. 1997;57:1478–83.

    Article  CAS  PubMed  Google Scholar 

  37. Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148.

    Article  CAS  PubMed  Google Scholar 

  38. Hoshi H. In vitro production of bovine embryos and their application for embryo transfer. Theriogenology. 2003;59:675–85.

    Article  PubMed  Google Scholar 

  39. Rezaei N, Abdul-Jalil AK, Chung JT, Chian RC. Role of essential and non-essential amino acids contained in maturation medium on bovine oocyte maturation and subsequent fertilization and early embryonic development in vitro. Theriogenology. 2003;59:497.

    Google Scholar 

  40. Biggers JD, Lawwitts JA, Lechene CP. The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol Reprod Dev. 1993;34:380–90.

    Article  CAS  PubMed  Google Scholar 

  41. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13:344–8.

    Google Scholar 

  42. Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lane M, Gardner DK. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod. 1998;13:991–7.

    Article  CAS  PubMed  Google Scholar 

  44. Summers MC, Bhatnagar PR, Lawitts JA, Biggers JD. Fertilization in vitro of mouse ova from inbred and outbred strains: complete preimplantation embryo development in glucose-supplemented KSOM. Biol Reprod. 1995;53:431–7.

    Article  CAS  PubMed  Google Scholar 

  45. Summers MC, McGinnis LK, Lawitts JA, Raffin M, Biggers JD. IVF of mouse ova in a simplex optimized medium supplanted with amino acids. Hum Reprod. 2000;15:1791–801.

    Article  CAS  PubMed  Google Scholar 

  46. Biggers JD, McGinnis LK, Raffin M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod. 2000;63:281–93.

    Article  CAS  PubMed  Google Scholar 

  47. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  CAS  PubMed  Google Scholar 

  48. Kane MT, Bavister BD. Vitamins requirements for development of eight-cell hamster embryos to hatching blastocysts in vitro. Biol Reprod. 1988;39:1137–43.

    Article  CAS  PubMed  Google Scholar 

  49. Fahy MM, Kane MT. Inositol stimulates DNA and protein synthesis, and expansion by rabbit blastocysts in vitro. Hum Reprod. 1992;7:550–2.

    Article  CAS  PubMed  Google Scholar 

  50. Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50:390–400.

    Article  CAS  PubMed  Google Scholar 

  51. Abdul Jalil AK, Rezaei N, Chung JT, Tan, SL, Chian RC. Effect of vitamins during oocyte maturation on subsequent embryonic development in vitro. 48th Annual Meeting CFAS. 2002; TP-24.

    Google Scholar 

  52. Naruse K, Kim HR, Shin YM, Chang SM, Lee HR, Park CS, Jin DI. Low concentrations of MEM vitamins during in vitro maturation of porcine oocytes improves subsequent parthenogenetic development. Theriogenology. 2007;67:407–12.

    Article  CAS  PubMed  Google Scholar 

  53. Thompson JG, Sympson AC, Pugh PA, Donelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioAssays. 1994;16:31–8.

    Article  CAS  Google Scholar 

  55. Nasr-Esfahani MH, Aitken RJ, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990;109:501–7.

    CAS  PubMed  Google Scholar 

  56. Nasr-Esfahani MH, Johnson NH. How does transferring overcome the in vitro block to development of the mouse preimplantation embryo? J Reprod Fertil. 1992;96:41–8.

    Article  CAS  PubMed  Google Scholar 

  57. Deleuze S, Goudet G. Cysteamine supplementation of in vitro maturation media: a review. Reprod Domest Anim. 2010;45:e476–82.

    Article  CAS  PubMed  Google Scholar 

  58. Kane MT, Headon DR. The role of commercial bovine serum albumin preparation in the culture of one-cell rabbit embryos to blastocyst. J Reprod Fertil. 1980;60:469–75.

    Article  CAS  PubMed  Google Scholar 

  59. Younis AI, Brackett BG, Fayrer-Hosken RA. Influence of serum and hormones on bovine oocyte maturation and fertilization in vitro. Gamete Res. 1989;23:189–201.

    Article  CAS  PubMed  Google Scholar 

  60. Cha KY, Koo JJ, KoJJ, Choi DH, Han SY, Yoon TK. Pregnancyafterin vitro fertilization of human follicular oocytes collectedfrom nonstimulatedcycles, their culture in vitro and their transfer in a donor oocyte program. Fteril Steril. 1991;55:109–13.

    Google Scholar 

  61. Ogawa T, Ono T, Marrs RP. The effect of serum fractions on single-cell mouse embryos in vitro. J IVF Embryo Transf. 1987;4:153–9.

    CAS  Google Scholar 

  62. Warzych E, Wrenzycki C, Peippo J, Lechniak D. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol Reprod Dev. 2007;74:280–9.

    Article  CAS  PubMed  Google Scholar 

  63. Warzych E, Peippo J, Szydlowski M, Lechniak D. Supplements to in vitro maturation media affect the production of bovine blastocysts and their apoptotic index but not the proportions of matured and apoptotic oocytes. Anim Reprod Sci. 2007;97:334–43.

    Article  CAS  PubMed  Google Scholar 

  64. Chung JT, Tosca L, Huang TH, Niwa K, Chian RC. The effect of polyvinylpyr-rolidone on bovine oocyte maturation in vitro and subsequent fertilization and embryonic development. Reprod BioMed Online. 2007;15:198–207.

    Article  PubMed  Google Scholar 

  65. Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology. 2005;146:77–84.

    Article  CAS  PubMed  Google Scholar 

  66. Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, Lampe PD, Jaffe LA. Luteining hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135:3229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136:1869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaccari S, Weeks JL, Hsieh M, Menniti FS, Conti M. Cyclic GMP signalling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod. 2009;81:595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007;67:6–15.

    Article  PubMed  Google Scholar 

  70. Chian RC. In-vitro maturation of immature oocytes for infertile women with PCOS. Reprod Biomed Online. 2004;8:547–52.

    Article  PubMed  Google Scholar 

  71. Patsoula E, Loutradis D, Drakakis P, Kallianidis K, Bletsa R, Michalas S. Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction. 2001;121:455–61.

    Article  CAS  PubMed  Google Scholar 

  72. Patsoula E, Loutradis D, Drakakis P, Michalas L, Bletsa R, Michalas S. Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos. Fertil Steril. 2003;79:1187–93.

    Article  PubMed  Google Scholar 

  73. Chian RC, Buckett WM, Too LL, Tan SL. Pregnancies resulting from in vitro matured oocytes retrieved from patients with polycystic ovary syndrome after priming with human chorionic gonadotropin. Fertil Steril. 1999;72:639–42.

    Article  CAS  PubMed  Google Scholar 

  74. Chian RC, Buckett WM, Tulandi T, Tan SL. Prospective randomized study of human chorionic gonadotropin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Hum Reprod. 2000;15:165–70.

    Article  CAS  PubMed  Google Scholar 

  75. Anderiesz C, Ferraretti AP, Magli C, Fiorentino A, Fortini D, Gianaroli L, Jones GM, Trounson AO. Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro. Hum Reprod. 2000;15:1140–8.

    Article  CAS  PubMed  Google Scholar 

  76. Choi YH, Carnevale EM, Seidel GE Jr, Squire EL. Effects of gonadotropins on bovine oocytes matured in TCM-199. Theriogenology. 2001;56:661–70.

    Article  CAS  PubMed  Google Scholar 

  77. Albertini DF. Origins and manififestations of oocyte maturation competencies. Reprod BioMed Online. 2003;6:410–5.

    Article  CAS  PubMed  Google Scholar 

  78. Gilchrist RB. Recent insights into oocyte-follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fertil Dev. 2011;23:23–31.

    Article  PubMed  Google Scholar 

  79. Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M. Luteining hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007;27:1914–24.

    Article  CAS  PubMed  Google Scholar 

  80. Reizel Y, Elbaz J, Dekel N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol Endocrinol. 2010;24:402–11.

    Article  CAS  PubMed  Google Scholar 

  81. Hillensjo T. Oocytematuration and glycolysis in isolated preovulatory follicles of PMS-injected immature rats. Acta Endocrinol. 1976;82:809–30.

    CAS  PubMed  Google Scholar 

  82. Billig H, Hedin L, Magnusson C. Gonadotrophins stimulate lactate production by rat cumulus and granulusa cells. Acta Endocrinol. 1983;103:562–6.

    CAS  PubMed  Google Scholar 

  83. Bayaa M, Booth RA, Sheng Y, Liu XJ. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc Nathl Acad Sci U S A. 2000;7:12607–12.

    Article  Google Scholar 

  84. Tesarik J, Mendoza C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80:1438–43.

    CAS  PubMed  Google Scholar 

  85. Seibel MM, Smith D, Dlugi AM, Levesque L. Periovulatory follicular fluid hormone levels in spontaneous human cycles. J Clin Endocrinol Metab. 1989;68:1073–7.

    Article  CAS  PubMed  Google Scholar 

  86. Dieleman SJ, Kruip TA, Fontijne P, de Jone WH, van der Weyden GC. Changes in oestradiol, progesterone and testosterone concentrations in follicular fluid and in the micromorphology of preovulatory bovine follicles relative to the peak of luteining hormone. J Endocrinol. 1983;97:31–42.

    Article  CAS  PubMed  Google Scholar 

  87. Mehlmann LM, Kline D. Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation. Biol Reprod. 1994;51:1088–98.

    Article  CAS  PubMed  Google Scholar 

  88. Herbert M, Gillespie JI, Murdoch AP. Development of calcium signalling mechanisms during maturation of human oocytes. Mol Hum Reprod. 1997;11:965–73.

    Article  Google Scholar 

  89. Chian RC, Gulekli B, Buckett WM, Tan SL. Priming with human chorionic gonadotropin before retrieval of immature oocytes in women with infertility due to the polycystic ovary syndrome. N Engl J Med. 1999;341:1624–6.

    Article  CAS  PubMed  Google Scholar 

  90. Yamashita Y, Kawashima I, Gunji Y, Hishinuma M, Shimada M. Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EDF-like factor, in cumulus cells, which enhances the EGF receptor signalling pathway during in vitro maturation of porcine COCs. J Reprod Dev. 2010;56:315–23.

    Article  CAS  PubMed  Google Scholar 

  91. Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science. 2002;297:1343–5.

    Article  CAS  PubMed  Google Scholar 

  92. Tsafriri A, Chun SY, Zhang R, Hsueh AJ, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biol. 1996;178:393–402.

    Article  CAS  PubMed  Google Scholar 

  93. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25:279–83.

    Article  CAS  PubMed  Google Scholar 

  94. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards J. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324:938–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De La Fuente R, O’Brien MJ, Epigg JJ. Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum Reprod. 1999;14:3060–8.

    Article  Google Scholar 

  96. Lorenzo PL, Illera MJ, Illera JC, Illera M. Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by the addition of epidermal growth factor and insulin-like growth factor. J Reprod Fertil. 1994;101:697–701.

    Article  CAS  PubMed  Google Scholar 

  97. Wang WH, Niwa K. Synergetic effects of epidermal growth factor and gonadotropins on the cytoplasmic maturation of pig oocytes in a serum-free medium. Zygote. 1995;3:345–50.

    Article  CAS  PubMed  Google Scholar 

  98. Gilchrist RB, Lane M, Thompson JG. Oocytesecretedfactors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  CAS  PubMed  Google Scholar 

  99. Jo JW, Jee BC, Suh CS, Kim SH. Addition of lysophosphatidic acid to mouse oocyte maturation media can enhance fertilization and developmental competence. Hum Reprod. 2014;29(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  100. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcome. Hum Reprod. 2010;25:2999–3011.

    Article  CAS  PubMed  Google Scholar 

  101. Gilchrist RB, De Vos M, Smitz J, Thompson JG. IVM media are designed specially to support immature cumulus- oocyte complexes not denuded oocytes that have failed to respond to hyperstimulation. Fertil Steril. 2011;96:e141.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Cheng Chian MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chian, RC., Yang, ZY. (2017). Laboratory Aspect of IVM Treatment. In: Chian, RC., Nargund, G., Huang, J. (eds) Development of In Vitro Maturation for Human Oocytes. Springer, Cham. https://doi.org/10.1007/978-3-319-53454-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53454-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53452-7

  • Online ISBN: 978-3-319-53454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics