Skip to main content

Follicular Development and Oocyte Growth

  • Chapter
  • First Online:
Development of In Vitro Maturation for Human Oocytes

Abstract

Recruitment of the follicular cohort occurs in response to a transient elevation in circulating FSH. The follicles develop through primordial, primary, secondary, antral, and pre-ovulatory stages before ovulation. After pubertal onset, a small number of the antral follicles can be rescued by gonadotropins to continue growth, and normally only one antral follicle is further developed each month in preparation for ovulation. Although traditional thinking proposes a single wave of cyclic follicular recruitment and growth, recently it has been suggested that multiple waves of follicle development may occur in the human ovary. Follicles in diameter of about 2–5 mm are present throughout the menstrual cycle. The oocytes retrieved from both follicular and luteal phases under 12 mm in diameter may be healthy unless the size of oocytes were smaller than 120 μm. It is a common belief that the oocyte growth is already finalized at the antral stage, significantly before follicle development is completed. Oocyte maturation refers to the oocyte completion of the second meiosis from GV stage to M-II stage following LH surge in vivo. In natural cycles, although the existence of dominant follicle does not affect the oocyte development competence that retrieved from the subordinate follicles, the oocytes obtained from the smaller size of follicles have lower developmental capacity than those retrieved from larger follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.

    Article  CAS  PubMed  Google Scholar 

  2. Bomsel-Helmreich O, Gougeon A, Thebault A, Saltarelli D, Milgrom E, Frydman R, et al. Healthy and atretic human follicles in the preovulatory phase: differences in evolution of follicular morphology and steroid content of follicular fluid. J Clin Endocrinol Metab. 1979;48(4):686–94. doi:10.1210/jcem-48-4-686.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122(2):303–15. doi:10.1016/j.cell.2005.06.031.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–50. doi:10.1038/nature02316.

    Article  CAS  PubMed  Google Scholar 

  5. Lee HJ, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J clin oncol: official j Am Soc Clin Oncol. 2007;25(22):3198–204. doi:10.1200/JCO.2006.10.3028.

    Article  CAS  Google Scholar 

  6. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55. doi:10.1210/edrv-17-2-121.

    Article  CAS  PubMed  Google Scholar 

  7. Forabosco A, Sforza C, De Pol A, Vizzotto L, Marzona L, Ferrario VF. Morphometric study of the human neonatal ovary. Anat Rec. 1991;231(2):201–8. doi:10.1002/ar.1092310208.

    Article  CAS  PubMed  Google Scholar 

  8. Baerwald AR, Adams GP, Pierson RA. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril. 2003;80(1):116–22.

    Article  PubMed  Google Scholar 

  9. Picton H, Briggs D, Gosden R. The molecular basis of oocyte growth and development. Mol Cell Endocrinol. 1998;145(1–2):27–37.

    Article  CAS  PubMed  Google Scholar 

  10. Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P. Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod. 1999;60(3):580–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ginther OJ, Bergfelt DR, Kulick LJ, Kot K. Selection of the dominant follicle in cattle: role of estradiol. Biol Reprod. 2000;63(2):383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril. 2014;101(1):20–30. doi:10.1016/j.fertnstert.2013.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells–potential roles in infertility treatment and fertility preservation. Maturitas. 2013;76(3):279–83. doi:10.1016/j.maturitas.2013.04.017.

    Article  PubMed  Google Scholar 

  14. Gougeon A. Is neo-oogenesis in the adult ovary, a realistic paradigm? Gynecol Obstet Fertil. 2010;38(6):398–401. doi:10.1016/j.gyobfe.2010.04.013.

    Article  CAS  PubMed  Google Scholar 

  15. Okutsu Y, Itoh MT, Takahashi N, Ishizuka B. Exogenous androstenedione induces formation of follicular cysts and premature luteinization of granulosa cells in the ovary. Fertil Steril. 2010;93(3):927–35. doi:10.1016/j.fertnstert.2008.10.064.

    Article  CAS  PubMed  Google Scholar 

  16. Rankin T, Dean J. The molecular genetics of the zona pellucida: mouse mutations and infertility. Mol Hum Reprod. 1996;2(11):889–94.

    Article  CAS  PubMed  Google Scholar 

  17. Oktay K, Nugent D, Newton H, Salha O, Chatterjee P, Gosden RG. Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril. 1997;67(3):481–6.

    Article  CAS  PubMed  Google Scholar 

  18. La Marca A, Broekmans FJ, Volpe A, Fauser BC, Macklon NS. Table ESIGfRE–AR. Anti-Mullerian hormone (AMH): what do we still need to know? Hum Reprod. 2009;24(9):2264–75. doi:10.1093/humrep/dep210.

    Article  PubMed  CAS  Google Scholar 

  19. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8. doi:10.1126/science.1086336.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3. doi:10.1126/science.1152257.

    Article  CAS  PubMed  Google Scholar 

  21. Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19(3):397–410. doi:10.1093/hmg/ddp483.

    Article  CAS  PubMed  Google Scholar 

  22. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  23. Gougeon A, Lefevre B, Testart J. Influence of a gonadotrophin-releasing hormone agonist and gonadotrophins on morphometric characteristics of the population of small ovarian follicles in cynomolgus monkeys (Macaca fascicularis). J Reprod Fertil. 1992;95(2):567–75.

    Article  CAS  PubMed  Google Scholar 

  24. Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25(12):2944–54. doi:10.1093/humrep/deq275.

    Article  PubMed  Google Scholar 

  25. Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3–4):165–83.

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol. 2004;214(1–2):19–25. doi:10.1016/j.mce.2003.12.001.

    Article  CAS  PubMed  Google Scholar 

  27. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188(1–2):65–73.

    Article  CAS  PubMed  Google Scholar 

  28. Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001;175(1–2):123–30.

    Article  CAS  PubMed  Google Scholar 

  29. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206. doi:10.1530/rep.1.01074.

    Article  CAS  PubMed  Google Scholar 

  30. Ballow DJ, Xin Y, Choi Y, Pangas SA, Rajkovic A. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr Patterns: GEP. 2006;6(8):1014–8. doi:10.1016/j.modgep.2006.04.007.

    Article  CAS  PubMed  Google Scholar 

  31. Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 2008;79(6):1176–82. doi:10.1095/biolreprod.108.071217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–9. doi:10.1126/science.1099755.

    Article  CAS  PubMed  Google Scholar 

  33. Gougeon A. Ovarian follicular growth in humans: ovarian ageing and population of growing follicles. Maturitas. 1998;30(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  34. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gougeon A, Lefevre B. Histological evidence of alternating ovulation in women. J Reprod Fertil. 1984;70(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  36. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J. Clin. Endocrinol. Metab. 1997;82(11):3748–51. doi:10.1210/jcem.82.11.4346.

    CAS  PubMed  Google Scholar 

  37. Rajareddy S, Reddy P, Du C, Liu L, Jagarlamudi K, Tang W, et al. p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol. 2007;21(9):2189–202. doi:10.1210/me.2007-0172.

    Article  CAS  PubMed  Google Scholar 

  38. Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem. 2000;275(50):39523–8. doi:10.1074/jbc.M007428200.

    Article  CAS  PubMed  Google Scholar 

  39. Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim Reprod Sci. 2004;82–83:109–26. doi:10.1016/j.anireprosci.2004.04.031.

    Article  PubMed  CAS  Google Scholar 

  40. Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev. 1992;13(4):641–69. doi:10.1210/edrv-13-4-641.

    CAS  PubMed  Google Scholar 

  41. Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA. 1999;96(13):7282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuzmin A, Lipatov D, Chistyakov T, Smirnova O, Arbuzova M, Ilin A, et al. Vascular endothelial growth factor in anterior chamber liquid patients with diabetic retinopathy, cataract and neovascular glaucoma. Ophthalmol. Ther. 2013;2(1):41–51. doi:10.1007/s40123-013-0014-3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baerwald AR, Adams GP, Pierson RA. Characterization of ovarian follicular wave dynamics in women. Biol Reprod. 2003;69(3):1023–31. doi:10.1095/biolreprod.103.017772.

    Article  CAS  PubMed  Google Scholar 

  44. Pache TD, Wladimiroff JW, de Jong FH, Hop WC, Fauser BC. Growth patterns of nondominant ovarian follicles during the normal menstrual cycle. Fertil Steril. 1990;54(4):638–42.

    Article  CAS  PubMed  Google Scholar 

  45. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994;15(6):725–51. doi:10.1210/edrv-15-6-725.

    Article  CAS  PubMed  Google Scholar 

  46. Engels V, Sanfrutos L, Perez-Medina T, Alvarez P, Zapardiel I, Godoy-Tundidor S, et al. Periovulatory follicular volume and vascularization determined by 3D and power Doppler sonography as pregnancy predictors in intrauterine insemination cycles. J Clin Ultrasound: JCU. 2011;39(5):243–7. doi:10.1002/jcu.20816.

    Article  PubMed  Google Scholar 

  47. Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223–54.

    CAS  PubMed  Google Scholar 

  48. Fair T. Follicular oocyte growth and acquisition of developmental competence. Anim. Reprod Sci. 2003;78(3–4):203–16. doi:10.1016/s0378-4320(03)00091-5.

    Article  CAS  PubMed  Google Scholar 

  49. Ginther OJ, Beg MA, Bergfelt DR, Donadeu FX, Kot K. Follicle selection in monovular species. Biol Reprod. 2001;65(3):638–47.

    Article  CAS  PubMed  Google Scholar 

  50. Calugaru D, Calugaru M. Treatment of neovascular glaucoma. Oftalmologia. 2012;56(3):20–39.

    CAS  PubMed  Google Scholar 

  51. Fortune JE. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci. 2003;78(3–4):135–63. doi:10.1016/s0378-4320(03)00088-5.

    Article  CAS  PubMed  Google Scholar 

  52. Ginther OJ, Gastal EL, Gastal MO, Bergfelt DR, Baerwald AR, Pierson RA. Comparative study of the dynamics of follicular waves in mares and women. Biol Reprod. 2004;71(4):1195–201. doi:10.1095/biolreprod.104.031054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Massin N, Gougeon A, Meduri G, Thibaud E, Laborde K, Matuchansky C, et al. Significance of ovarian histology in the management of patients presenting a premature ovarian failure. Hum Reprod. 2004;19(11):2555–60. doi:10.1093/humrep/deh461.

    Article  CAS  PubMed  Google Scholar 

  54. Adams GP, Singh J, Baerwald AR. Large animal models for the study of ovarian follicular dynamics in women. Theriogenology. 2012;78(8):1733–48. doi:10.1016/j.theriogenology.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  55. Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev. 1997;18(1):71–106. doi:10.1210/edrv.18.1.0290.

    CAS  PubMed  Google Scholar 

  56. Hsueh AJ, Adashi EY, Jones PB, Welsh TH Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127. doi:10.1210/edrv-5-1-76.

    Article  CAS  PubMed  Google Scholar 

  57. Baird DT, Backstrom T, McNeilly AS, Smith SK, Wathen CG. Effect of enucleation of the corpus luteum at different stages of the luteal phase of the human menstrual cycle on subsequent follicular development. J Reprod Fertil. 1984;70(2):615–24.

    Article  CAS  PubMed  Google Scholar 

  58. Palma GA, Arganaraz ME, Barrera AD, Rodler D, Mutto AA, Sinowatz F. Biology and biotechnology of follicle development. Sci World J. 2012;2012:938138. doi:10.1100/2012/938138.

    Article  CAS  Google Scholar 

  59. Duggavathi R, Murphy BD. Development. Ovulation Signals Sci. 2009;324(5929):890–1. doi:10.1126/science.1174130.

    CAS  Google Scholar 

  60. Acosta TJ, Miyamoto A. Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Anim Reprod Sci. 2004;82–83:127–40. doi:10.1016/j.anireprosci.2004.04.022.

    Article  PubMed  CAS  Google Scholar 

  61. Rawan AF, Yoshioka S, Abe H, Acosta TJ. Insulin-like growth factor-1 regulates the expression of luteinizing hormone receptor and steroid production in bovine granulosa cells. Reproduction in domestic animals =. Zuchthygiene. 2015;50(2):283–91. doi:10.1111/rda.12486.

    Article  CAS  PubMed  Google Scholar 

  62. diZerega GS, Hodgen GD. Folliculogenesis in the primate ovarian cycle. Endocrine reviews. 1981;2(1):27–49. doi:10.1210/edrv-2-1-27.

  63. Xu Z, Garverick HA, Smith GW, Smith MF, Hamilton SA, Youngquist RS. Expression of follicle-stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biol Reprod. 1995;53(4):951–7.

    Article  CAS  PubMed  Google Scholar 

  64. Baird DT, Fraser IS. Blood production and ovarian secretion rates of estradiol-17 beta and estrone in women throughout the menstrual cycle. J Clin Endocrinol Metab. 1974;38(6):1009–17. doi:10.1210/jcem-38-6-1009.

    Article  CAS  PubMed  Google Scholar 

  65. Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod. 1996;55(5):942–8.

    Article  CAS  PubMed  Google Scholar 

  66. Simha A, Braganza A, Abraham L, Samuel P, Lindsley K. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2013;10:CD007920. doi:10.1002/14651858.CD007920.pub2.

  67. Zhu L, Zhou W, Kong PC, Wang MS, Zhu Y, Feng LX, et al. FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection. Zygote. 2015;23(3):336–41. doi:10.1017/S0967199413000592.

    Article  CAS  PubMed  Google Scholar 

  68. Filicori M, Cognigni GE, Tabarelli C, Pocognoli P, Taraborrelli S, Spettoli D, et al. Stimulation and growth of antral ovarian follicles by selective LH activity administration in women. J Clin Endocrinol Metab. 2002;87(3):1156–61. doi:10.1210/jcem.87.3.8322.

    Article  CAS  PubMed  Google Scholar 

  69. Filicori M, Cognigni GE, Taraborrelli S, Parmegiani L, Bernardi S, Ciampaglia W. Intracytoplasmic sperm injection pregnancy after low-dose human chorionic gonadotropin alone to support ovarian folliculogenesis. Fertil Steril. 2002;78(2):414–6.

    Article  PubMed  Google Scholar 

  70. Ardaens Y. [The ovary: folliculogenesis and ovulation disorders]. Journal de gynecologie, obstetrique et biologie de la reproduction. 2007;36 Spec No 2:31–6.

    Google Scholar 

  71. Kimura S, Matsumoto T, Matsuyama R, Shiina H, Sato T, Takeyama K, et al. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metabo TEM. 2007;18(5):183–9. doi:10.1016/j.tem.2007.04.002.

    Article  CAS  Google Scholar 

  72. Brailly S, Gougeon A, Milgrom E, Bomsel-Helmreich O, Papiernik E. Androgens and progestins in the human ovarian follicle: differences in the evolution of preovulatory, healthy nonovulatory, and atretic follicles. J. Clin Endocrinol Metab. 1981;53(1):128–34. doi:10.1210/jcem-53-1-128.

    Article  CAS  PubMed  Google Scholar 

  73. Johnson AL. Ovarian follicle selection and granulosa cell differentiation. Poult Sci. 2015;94(4):781–5. doi:10.3382/ps/peu008.

    Article  CAS  PubMed  Google Scholar 

  74. Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, et al. A new model of development of the mammalian ovary and follicles. PLoS One. 2013;8(2):e55578. doi:10.1371/journal.pone.0055578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18(1):73–91. doi:10.1093/humupd/dmr039.

    Article  PubMed  Google Scholar 

  76. Yang DZ, Yang W, Li Y, He Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J Assist Reprod Genet. 2013;30(2):213–9. doi:10.1007/s10815-013-9944-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, et al. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Frontiers Biosci J Virtual Libr. 2007;12:3628–39.

    Article  CAS  Google Scholar 

  78. Broekmans FJ, de Ziegler D, Howles CM, Gougeon A, Trew G, Olivennes F. The antral follicle count: practical recommendations for better standardization. Fertil Steril. 2010;94(3):1044–51. doi:10.1016/j.fertnstert.2009.04.040.

    Article  PubMed  Google Scholar 

  79. Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Annu Rev Physiol. 1997;59:349–63. doi:10.1146/annurev.physiol.59.1.349.

    Article  CAS  PubMed  Google Scholar 

  80. Billig H, Furuta I, Hsueh AJ. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology. 1993;133(5):2204–12. doi:10.1210/endo.133.5.8404672.

    Article  CAS  PubMed  Google Scholar 

  81. Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJ. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology. 1996;137(4):1447–56. doi:10.1210/endo.137.4.8625923.

    Article  CAS  PubMed  Google Scholar 

  82. Gaytan F, Morales C, Bellido C, Aguilar E, Sanchez-Criado JE. Ovarian follicle macrophages: is follicular atresia in the immature rat a macrophage-mediated event? Biol Reprod. 1998;58(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  83. Aguirre SA, Pons P, Settembrini BP, Arroyo D, Canavoso LE. Cell death mechanisms during follicular atresia in Dipetalogaster maxima, a vector of Chagas’ disease (Hemiptera: Reduviidae). J Insect Physiol. 2013;59(5):532–41. doi:10.1016/j.jinsphys.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  84. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11(2):162–77. doi:10.1093/humupd/dmi001.

    Article  PubMed  CAS  Google Scholar 

  85. Chun SY, Eisenhauer KM, Minami S, Hsueh AJ. Growth factors in ovarian follicle atresia. Semin Reprod Endocrinol. 1996;14(3):197–202. doi:10.1055/s-2007-1016329.

    Article  CAS  PubMed  Google Scholar 

  86. Braw RH, Bar-Ami S, Tsafriri A. Effect of hypophysectomy on atresia of rat preovulatory follicles. Biol Reprod. 1981;25(5):989–96.

    Article  CAS  PubMed  Google Scholar 

  87. Cao Y-X, Chian R-C. Fertility Preservation with Immature and in Vitro Matured Oocytes. Semin Reprod Med. 2009;27(06):456–64. doi:10.1055/s-0029-1241055.

    Article  PubMed  Google Scholar 

  88. Kwintkiewicz J, Giudice LC. The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin Reprod Med. 2009;27(1):43–51. doi:10.1055/s-0028-1108009.

    Article  CAS  PubMed  Google Scholar 

  89. Flaws JA, DeSanti A, Tilly KI, Javid RO, Kugu K, Johnson AL, et al. Vasoactive intestinal peptide-mediated suppression of apoptosis in the ovary: potential mechanisms of action and evidence of a conserved antiatretogenic role through evolution. Endocrinology. 1995;136(10):4351–9. doi:10.1210/endo.136.10.7664654.

    Article  CAS  PubMed  Google Scholar 

  90. Dunne C, Seethram K, Roberts J. Growth Hormone Supplementation in the Luteal Phase Before Microdose GnRH Agonist Flare Protocol for In Vitro Fertilization. Journal of obstetrics and gynaecology Canada: JOGC =. J D’Reproductive et gynecol du Canada: JOGC. 2015;37(9):810–5.

    Google Scholar 

  91. Eisenhauer KM, Chun SY, Billig H, Hsueh AJ. Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod. 1995;53(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson AL, Bridgham JT. Caspase-mediated apoptosis in the vertebrate ovary. Reproduction. 2002;124(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson AL, Langer JS, Bridgham JT. Survivin as a cell cycle-related and antiapoptotic protein in granulosa cells. Endocrinology. 2002;143(9):3405–13. doi:10.1210/en.2002-220107.

    Article  CAS  PubMed  Google Scholar 

  94. Johnson AL, Solovieva EV, Bridgham JT. Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development. Biol Reprod. 2002;67(4):1313–20.

    Article  CAS  PubMed  Google Scholar 

  95. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. doi:10.1038/80442.

    Article  CAS  PubMed  Google Scholar 

  96. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708. doi:10.1093/humrep/dem408.

    Article  PubMed  Google Scholar 

  97. Oktem O, Oktay K. The ovary: anatomy and function throughout human life. Ann N Y Acad Sci. 2008;1127:1–9. doi:10.1196/annals.1434.009.

    Article  CAS  PubMed  Google Scholar 

  98. Makrigiannakis A, Amin K, Coukos G, Tilly JL, Coutifaris C. Regulated expression and potential roles of p53 and Wilms’ tumor suppressor gene (WT1) during follicular development in the human ovary. J Clin Endocrinol Metab. 2000;85(1):449–59. doi:10.1210/jcem.85.1.6246.

    CAS  PubMed  Google Scholar 

  99. Tilly JL. Emerging technologies to control oocyte apoptosis are finally treading on fertile ground. Sci World J. 2001;1:181–3. doi:10.1100/tsw.2001.39.

    Article  CAS  Google Scholar 

  100. Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707–24. doi:10.1210/edrv-15-6-707.

    CAS  PubMed  Google Scholar 

  101. Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod biomed Online. 2007;14(6):758–64.

    Article  CAS  PubMed  Google Scholar 

  102. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp & Clin Assist Reprod. 2006;3:2. doi:10.1186/1743-1050-3-2.

    Article  Google Scholar 

  103. Gosden R, Lee B. Portrait of an oocyte: our obscure origin. J Clin Investig. 2010;120(4):973–83. doi:10.1172/JCI41294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eppig JJ, Schroeder AC, O’Brien MJ. Developmental capacity of mouse oocytes matured in vitro: effects of gonadotrophic stimulation, follicular origin and oocyte size. J Reprod Fertil. 1992;95(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  105. Durinzi KL, Saniga EM, Lanzendorf SE. The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995;63(2):404–6.

    Article  CAS  PubMed  Google Scholar 

  106. Lopes FL, Fortier AL, Darricarrere N, Chan D, Arnold DR, Trasler JM. Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum Mol Genet. 2009;18(11):2032–44. doi:10.1093/hmg/ddp127.

    Article  CAS  PubMed  Google Scholar 

  107. Wittmaack FM, Kreger DO, Blasco L, Tureck RW, Mastroianni L Jr, Lessey BA. Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection. Fertil Steril. 1994;62(6):1205–10.

    Article  CAS  PubMed  Google Scholar 

  108. Mihm M, Evans AC. Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reproduction in domestic animals =. Zuchthygiene. 2008;43(Suppl 2):48–56. doi:10.1111/j.1439-0531.2008.01142.x.

    Article  PubMed  Google Scholar 

  109. Chian RC, Chung JT, Downey BR, Tan SL. Maturational and developmental competence of immature oocytes retrieved from bovine ovaries at different phases of folliculogenesis. Reprod biomed online. 2002;4(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  110. Chian RC, Tan SL. Maturational and developmental competence of cumulus-free immature human oocytes derived from stimulated and intracytoplasmic sperm injection cycles. Reprod Biomed Online. 2002;5(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  111. Dekel N. Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol Cell Endocrinol. 2005;234(1–2):19–25. doi:10.1016/j.mce.2004.09.010.

    Article  CAS  PubMed  Google Scholar 

  112. Pyrzynska B, Maleszewski M, Maluchnik D. Mouse oocytes penetrated by sperm at GV or GVBD stage lose the ability to fuse with additional spermatozoa. Zygote. 1996;4(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  113. Liu X, Xie F, Zamah AM, Cao B, Conti M. Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle. Biol Reprod. 2014;91(1):9. doi:10.1095/biolreprod.113.116814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chian RC, Chung JT, Niwa K, Sirard MA, Downey BR, Tan SL. Reversible changes in protein phosphorylation during germinal vesicle breakdown and pronuclear formation in bovine oocytes in vitro. Zygote. 2003;11(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  115. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod. 2010;25(12):2999–3011. doi:10.1093/humrep/deq246.

    Article  CAS  PubMed  Google Scholar 

  116. Chian RC, Niwa K. Completion of first meiosis by sperm penetration in vitro of bovine oocytes inhibited at metaphase-I with dimethylsulphoxide. Theriogenology. 1994;42(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  117. Ghodageri MG, Katti P. In vitro induction/inhibition of germinal vesicle breakdown (GVBD) in frog (Euphlyctis cyanophlyctis) oocytes by endocrine active compounds. Drug Chem Toxicol. 2013;36(2):217–23. doi:10.3109/01480545.2012.710623.

    Article  CAS  PubMed  Google Scholar 

  118. Gerhart J, Wu M, Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. The Journal of Cell Biology. 1984;98(4):1247–55.

    Article  CAS  PubMed  Google Scholar 

  119. Shibuya EK, Masui Y. Molecular characteristics of cytostatic factors in amphibian egg cytosols. Development. 1989;106(4):799–808.

    CAS  PubMed  Google Scholar 

  120. Hashimoto N, Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol. 1988;126(2):242–52.

    Article  CAS  PubMed  Google Scholar 

  121. Sagata N, Daar I, Oskarsson M, Showalter SD, Vande Woude GF. The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science. 1989;245(4918):643–6.

    Article  CAS  PubMed  Google Scholar 

  122. Hunter T, Pines J. Cyclins Cancer. Cell. 1991;66(6):1071–4.

    Article  CAS  PubMed  Google Scholar 

  123. Chapman DL, Wolgemuth DJ. Isolation of the murine cyclin B2 cDNA and characterization of the lineage and temporal specificity of expression of the B1 and B2 cyclins during oogenesis, spermatogenesis and early embryogenesis. Development. 1993;118(1):229–40.

    CAS  PubMed  Google Scholar 

  124. Whitaker M, Patel R. Calcium and cell cycle control. Development. 1990;108(4):525–42.

    CAS  PubMed  Google Scholar 

  125. Sagata N, Watanabe N, Vande Woude GF, Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 1989;342(6249):512–8. doi:10.1038/342512a0.

    Article  CAS  PubMed  Google Scholar 

  126. Sun QY, Lu Q, Breitbart H, Chen DY. CAMP inhibits mitogen-activated protein (MAP) kinase activation and resumption of meiosis, but exerts no effects after spontaneous germinal vesicle breakdown (GVBD) in mouse oocytes. Reprod Fertil Dev. 1999;11(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  127. Merrall NW, Plevin RJ, Stokoe D, Cohen P, Nebreda AR, Gould GW. Mitogen-activated protein kinase (MAP kinase), MAP kinase kinase and c-Mos stimulate glucose transport in Xenopus oocytes. Biochem J. 1993;295(Pt 2):351–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nebreda AR, Porras A, Santos E. p21ras-induced meiotic maturation of Xenopus oocytes in the absence of protein synthesis: MPF activation is preceded by activation of MAP and S6 kinases. Oncogene. 1993;8(2):467–77.

    CAS  PubMed  Google Scholar 

  129. Sun QY, Rubinstein S, Breitbart H. MAP kinase activity is downregulated by phorbol ester during mouse oocyte maturation and egg activation in vitro. Mol Reprod Dev. 1999;52(3):310–8. doi:10.1002/(SICI)1098-2795(199903)52:3<310:AID-MRD9>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  130. Chian RC, Tan SL, Sirard MA. Protein phosphorylation in bovine oocytes following fertilisation and parthenogenetic activation in vitro. Zygote. 1999;7(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  131. Wassarman PM, Letourneau GE. RNA synthesis in fully-grown mouse oocytes. Nature. 1976;261(5555):73–4.

    Article  CAS  PubMed  Google Scholar 

  132. Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990;26(1):90–100. doi:10.1002/mrd.1080260113.

    Article  CAS  PubMed  Google Scholar 

  133. Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  134. Thibault C, Gerard M, Menezo Y. Preovulatory and ovulatory mechanisms in oocyte maturation. J Reprod Fertil. 1975;45(3):605–10.

    Article  CAS  PubMed  Google Scholar 

  135. Chian RC, Blondin P, Sirard MA. Effect of progesterone and/or estradiol-17beta on sperm penetration in vitro of bovine oocytes. Theriogenology. 1996;46(3):459–69.

    Article  CAS  PubMed  Google Scholar 

  136. Watson CS, Campbell CH, Gametchu B. Membrane oestrogen receptors on rat pituitary tumour cells: immuno-identification and responses to oestradiol and xenoestrogens. Exp Physiol. 1999;84(6):1013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mendoza C, Soler A, Tesarik J. Nongenomic steroid action: independent targeting of a plasma membrane calcium channel and a tyrosine kinase. Biochem Biophys Res Commun. 1995;210(2):518–23. doi:10.1006/bbrc.1995.1690.

    Article  CAS  PubMed  Google Scholar 

  138. Tesarik J, Sousa M, Mendoza C. Sperm-induced calcium oscillations of human oocytes show distinct features in oocyte center and periphery. Mol Reprod Dev. 1995;41(2):257–63.

    Article  CAS  PubMed  Google Scholar 

  139. Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update. 2000;6(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  140. Seibel MM, Ranoux C, Kearnan M. In vitro fertilization: how much is enough? New England J Med. 1989;321(15):1052–3. doi:10.1056/NEJM198910123211516.

    Article  CAS  Google Scholar 

  141. Seibel MM, Smith D, Dlugi AM, Levesque L. Periovulatory follicular fluid hormone levels in spontaneous human cycles. J Clin Endocrinol Metab. 1989;68(6):1073–7. doi:10.1210/jcem-68-6-1073.

    Article  CAS  PubMed  Google Scholar 

  142. Schreiber JR, Nakamura K, Truscello AM, Erickson GF. Progestins inhibit FSH-induced functional LH receptors in cultured rat granulosa cells. Mol Cell Endocrinol. 1982;25(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  143. Richards JS, Hedin L. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu Rev Physiol. 1988;50:441–63. doi:10.1146/annurev.ph.50.030188.002301.

    Article  CAS  PubMed  Google Scholar 

  144. Chapman DL, Wolgemuth DJ. Expression of proliferating cell nuclear antigen in the mouse germ line and surrounding somatic cells suggests both proliferation-dependent and -independent modes of function. Int j Dev Biol. 1994;38(3):491–7.

    CAS  PubMed  Google Scholar 

  145. Chian RC, Buckett WM, Too LL, Tan SL. Pregnancies resulting from in vitro matured oocytes retrieved from patients with polycystic ovary syndrome after priming with human chorionic gonadotropin. Fertil Steril. 1999;72(4):639–42.

    Article  CAS  PubMed  Google Scholar 

  146. Chian RC, Gulekli B, Buckett WM, Tan SL. Priming with human chorionic gonadotropin before retrieval of immature oocytes in women with infertility due to the polycystic ovary syndrome. The New England journal of medicine. 1999;341(21):1624, 6. doi:10.1056/NEJM199911183412118.

  147. Schwall RH, Erickson GF. A central role for cyclic AMP, but not progesterone, in luteinizing hormone receptor down-regulation in the granulosa cell. J Biol Chem. 1983;258(21):13199–204.

    CAS  PubMed  Google Scholar 

  148. Chian RC, Ao A, Clarke HJ, Tulandi T, Tan SL. Production of steroids from human cumulus cells treated with different concentrations of gonadotropins during culture in vitro. Fertil Steril. 1999;71(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  149. McGinnis LK, Limback SD, Albertini DF. Signaling modalities during oogenesis in mammals. Curr Top Dev Biol. 2013;102:227–42. doi:10.1016/B978-0-12-416024-8.00008-8.

    Article  CAS  PubMed  Google Scholar 

  150. Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev. 2009;30(6):624–712. doi:10.1210/er.2009-0012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bachvarova R. Gene expression during oogenesis and oocyte development in mammals. Dev Biol (N Y 1985). 1985;1:453–524.

    Google Scholar 

  152. Judson H, Hayward BE, Sheridan E, Bonthron DT. A global disorder of imprinting in the human female germ line. Nature. 2002;416(6880):539–42. doi:10.1038/416539a.

    Article  CAS  PubMed  Google Scholar 

  153. Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM. Methylation dynamics of imprinted genes in mouse germ cells. Genomics. 2002;79(4):530–8. doi:10.1006/geno.2002.6732.

    Article  CAS  PubMed  Google Scholar 

  154. Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, et al. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development. 1998;125(8):1553–60.

    CAS  PubMed  Google Scholar 

  155. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461(7262):415–8. doi:10.1038/nature08315.

    Article  CAS  PubMed  Google Scholar 

  156. El-Maarri O, Buiting K, Peery EG, Kroisel PM, Balaban B, Wagner K, et al. Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet. 2001;27(3):341–4. doi:10.1038/85927.

    Article  CAS  PubMed  Google Scholar 

  157. Fortier AL, McGraw S, Lopes FL, Niles KM, Landry M, Trasler JM. Modulation of imprinted gene expression following superovulation. Mol Cell Endocrinol. 2014;388(1–2):51–7. doi:10.1016/j.mce.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  158. McGee EA, Hsueh AJW. Initial cyclic recruitment of ovarian follicles. Endocrine Review. 2000;21(2):200–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Cheng Chian Msc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, H., Chian, RC. (2017). Follicular Development and Oocyte Growth. In: Chian, RC., Nargund, G., Huang, J. (eds) Development of In Vitro Maturation for Human Oocytes. Springer, Cham. https://doi.org/10.1007/978-3-319-53454-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53454-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53452-7

  • Online ISBN: 978-3-319-53454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics