Skip to main content

Transformations from Variable Delays to Constant Delays with Applications in Engineering and Biology

  • Chapter
  • First Online:
Time Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 7))

Abstract

The transformation from systems with time-varying delays or state-dependent delays to systems with constant delays is studied. The transformation exists if the delay is defined by a transport with a variable velocity over a constant distance. In fact, time-varying or state-dependent delays, which are generated by such a mechanism, are common in engineering and biology. We study two paradigmatic time delay systems in more detail. For metal cutting processes, or more precisely turning with spindle speed variation, we show that the analysis of the machine tool vibrations via constant delays in terms of the spindle rotation angle is more advantageous than the conventional analysis of the vibrations with time-varying delays in the time domain. In a second example, motivated by the McKendrick equation modeling structured populations, we show that systems with variable delays and the equivalent systems with constant delays are, in addition, equivalent to partial differential equations with moving and constant boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a specific variable transport delay block in the MATLAB/Simulink software environment for such type of delays.

  2. 2.

    No delayed values of \(x_\tau (t)\) appear in the DDE system, and therefore, only an initial value \(x_\tau (0)\) and no initial function must be specified for the additional component \(x_\tau (t)\).

References

  1. Ahmed, A., Verriest, E.: Estimator design for a subsonic rocket car (soft landing) based on state-dependent delay measurement. IEEE Conf. Decis. Control 5698–5703 (2013)

    Google Scholar 

  2. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. 53, 619–642 (2004)

    Article  Google Scholar 

  3. Ambika, G., Amritkar, R.: Anticipatory synchronization with variable time delay and reset. Phys. Rev. E 79, 056,206 (2009)

    Google Scholar 

  4. Bellman, R., Cooke, K.: On the computational solution of a class of functional differential equations. J. Math. Anal. Appl. 12(3), 495–500 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bocharov, G., Rihan, F.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125, 183–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresch-Pietri, D., Chauvin, J., Petit, N.: Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type. IEEE Trans. Autom. Control 59(9), 2385–2399 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bresch-Pietri, D., Petit, N.: Implicit integral equations for modeling systems with a transport delay. In: Witrant, E., Fridman, E., Sename, O., Dugard,L. (eds.) Recent Results on Time-Delay Systems: Analysis and Control, pp. 3–21. Springer (2016)

    Google Scholar 

  8. Ghil, M., Zaliapin, I., Thompson, S.: A delay differential model of enso variability: parametric instability and the distribution of extremes. Nonlinear Proc. Geophys. 15, 417–433 (2008)

    Article  Google Scholar 

  9. Hale, J., Lunel, S.: Introduction to functional differential equations. Appl. Math. Sci. No. 99 (1993). Springer

    Google Scholar 

  10. Hartung, F., Krisztin, T., Walther, H.O., Wu, J.: Functional differential equations with state-dependent delays: theory and applications. In: Canada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, pp. 435–545. North-Holland (2006)

    Google Scholar 

  11. Insperger, T., Stépán, G.: Stability analysis of turning with periodic spindle speed modulation via semi-discretization. J. Vib. Control 10(12), 1835–1855 (2004)

    Article  MATH  Google Scholar 

  12. Insperger, T., Stépán, G.: Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications. Springer (2011)

    Google Scholar 

  13. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47, 275–283 (2007)

    Article  MATH  Google Scholar 

  14. Jüngling, T., Gjurchinovski, A., Urumov, V.: Experimental time-delayed feedback control with variable and distributed delays. Phys. Rev. E 86, 046,213 (2012)

    Google Scholar 

  15. Keyfitz, B., Keyfitz, N.: The mckendrick partial differential equation and its uses in epidemiology and population study. Math. Comput. Model. 26(6), 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic Press (1993)

    Google Scholar 

  17. Kyrychko, Y., Hogan, S.: On the use of delay equations in engineering applications. J. Vib. Control 16, 943–960 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lakshmanan, M., Senthilkumar, D.: Dynamics of Nonlinear Time-Delay Systems. Springer (2011)

    Google Scholar 

  19. Mahaffy, J.M., Bélair, J., Mackey, M.C.: Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J. Theor. Biol. 190(2), 135–146 (1998)

    Article  Google Scholar 

  20. Margolis, S., O’Donnell, J.: Rigorous treatments of variable time delays. IEEE Trans. Electron. Comput. 12(3), 307–309 (1963)

    Article  Google Scholar 

  21. Martínez-Llinàs, J., Porte, X., Soriano, M.C., Colet, P., Fischer, I.: Dynamical properties induced by state-dependent delays in photonic systems. Nat. Commun. 6, 7425 (2015)

    Article  Google Scholar 

  22. Masoller, C., Torrent, M.C., García-Ojalvo, J.: Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Philos. Trans. R. Soc. A 367(1901), 3255–3266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1925)

    Article  Google Scholar 

  24. Orosz, G., Moehlis, J., Murray, R.M.: Controlling biological networks by time-delayed signals. Philos. Trans. R. Soc. A 368(1911), 439–454 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Otto, A., Radons, G.: Application of spindle speed variation for chatter suppression in turning. CIRP J. Manuf. Sci. Technol. 6(2), 102–109 (2013)

    Article  Google Scholar 

  26. Otto, A., Radons, G.: The influence of tangential and torsional vibrations on the stability lobes in metal cutting. Nonlinear Dyn. 82, 1989–2000 (2015)

    Article  Google Scholar 

  27. Pyragas, V., Pyragas, K.: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay. Phys. Lett. A 375(44), 3866–3871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosin, D.P., Rontani, D., Gauthier, D.J.: Synchronization of coupled boolean phase oscillators. Phys. Rev. E 89, 042,907 (2014)

    Google Scholar 

  30. Schley, D., Gourley, S.: Linear stability criteria for population models with periodically perturbed delays. J. Math. Biol. 40, 500–524 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schuster, H.G., Schöll, E.: Handbook of Chaos Control. Wiley-VCH (2007)

    Google Scholar 

  32. Seddon, J., Johnson, R.: The simulation of variable delay. IEEE Trans. Comput. C-17, 89 –94 (1968)

    Google Scholar 

  33. Sieber, J.: Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete Contin. Dyn. Syst. 32(8), 2607–2651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith, H.: Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. Math. Biosci. 113(1), 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smith, H.: An Introduction to Delay Differential Equations With Applications to the Life Sciences. Springer (2010)

    Google Scholar 

  36. Soriano, M.C., García-Ojalvo, J., Mirasso, C.R., Fischer, I.: Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)

    Article  Google Scholar 

  37. Sugitani, Y., Konishi, K., Hara, N.: Experimental verification of amplitude death induced by a periodic time-varying delay-connection. Nonlinear Dyn. 70(3), 2227–2235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tsao, T.C., McCarthy, M.W., Kapoor, S.G.: A new approach to stability analysis of variable speed machining systems. Int. J. Mach. Tools Manuf. 33(6), 791–808 (1993)

    Article  Google Scholar 

  39. Verriest, E.I.: Inconsistencies in systems with time-varying delays and their resolution. IMA J. Math. Control Inf. 28(2), 147–162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Voronov, S., Gouskov, A., Kvashnin, A., Butcher, E., Sinha, S.: Influence of torsional motion on the axial vibrations of a drilling tool. J. Comput. Nonlinear Dyn. 2(1), 58–64 (2007)

    Article  Google Scholar 

  41. Walther, H.O.: On a model for soft landing with state-dependent delay. J. Dyn. Differ. Equ. 19(3), 593–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zatarain, M., Bediaga, I., Muñoa, J., Lizarralde, R.: Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann. 57(1), 379–384 (2008)

    Article  Google Scholar 

  43. Zenger, K., Niemi, A.: Modelling and control of a class of time-varying continuous flow processes. J Proc. Control 19(9), 1511–1518 (2009)

    Article  Google Scholar 

  44. Zhang, F., Yeddanapudi, M.: Modeling and simulation of time-varying delays. In: Proceedings of TMS/DEVS, p. 34. San Diego, CA, USA (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Otto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Otto, A., Radons, G. (2017). Transformations from Variable Delays to Constant Delays with Applications in Engineering and Biology. In: Insperger, T., Ersal, T., Orosz, G. (eds) Time Delay Systems. Advances in Delays and Dynamics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-53426-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53426-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53425-1

  • Online ISBN: 978-3-319-53426-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics