Skip to main content

Sampled-Data Stabilization of Nonlinear Delay Systems with a Compact Absorbing Set and State Measurement

  • Chapter
  • First Online:
Book cover Time Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 7))

  • 1550 Accesses

Abstract

We present a methodology for the global sampled-data stabilization of systems with a compact absorbing set and input/measurement delays. The methodology is based on a numerical prediction scheme, which is combined with a projection of the state measurement on an appropriate sphere. The stabilization is robust to perturbations of the sampling schedule and is robust with respect to measurement noise. The obtained results are novel even for the delay-free case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst. Control Lett. 62(7), 539–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed-Ali, T., Karafyllis, I., Krstic, M., Lamnabhi-Lagarrigue, F.: Robust stabilization of nonlinear globally Lipschitz delay systems. In: Malisoff, M., Mazenc, F., Pepe, P., Karafyllis, I. (eds.) to appear in the edited book entitled Recent Results on Nonlinear Time Delayed Systems in the series Advances in Delays and Dynamics (ADD@S). Springer

    Google Scholar 

  3. Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE TAC 58, 275–289 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bekiaris-Liberis, N., Krstic, M.: Nonlinear Control Under Nonconstant Delays, SIAM (2013)

    Google Scholar 

  5. Bekiaris-Liberis, N., Krstic, M.: Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations. Automatica 49(6), 1576–1590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castillo-Toledo, B., Di Gennaro, S., Sandoval Castro, G.: Stability analysis for a class of sampled nonlinear systems with time-delay. In: Proceedings of the 49th CDC, GA, USA, pp. 1575–1580 (2010)

    Google Scholar 

  7. Fridman, E., Seuret, A., Richard, J.-P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, H., Chen, T., Lam, J.: A new system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heemels, M., Teel, A.R., van de Wouw, N., Nešić, D.: Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance. IEEE TAC 55(8), 1781–1796 (2010)

    MathSciNet  Google Scholar 

  10. Karafyllis, I., Kravaris, C.: Global exponential observers for two classes of nonlinear systems. Syst. Control Lett. 61(7), 797–806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE TAC 57(5), 1141–1154 (2012)

    MathSciNet  Google Scholar 

  12. Karafyllis, I., Krstic, M.: Stabilization of nonlinear delay systems using approximate predictors and high-gain observers. Automatica 49(12), 3623–3631 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karafyllis, I., Krstic, M., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: Global stabilization of nonlinear delay systems with a compact absorbing set. Int. J. Control 87(5), 1010–1027 (2014)

    Article  MATH  Google Scholar 

  14. Karafyllis, I., Krstic, M.: Numerical schemes for nonlinear predictor feedback. Math. Control Signals Syst. 26(4), 519–546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karafyllis, I., Malisoff, M., de Queiroz, M., Krstic, M., Yang, R.: Predictor-based tracking for neuromuscular electrical stimulation. Int. J. Robust Nonlinear Control 25(14), 2391–2419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karafyllis, I., Krstic, M.: Sampled-data stabilization of nonlinear delay systems with a compact absorbing set. SIAM J. Control Optim. 54(2), 790–818 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall (1996)

    Google Scholar 

  18. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhäuser (2009)

    Google Scholar 

  19. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE TAC 55(2), 287–303 (2010)

    MathSciNet  Google Scholar 

  20. Lozano, R., Castillo, P., Garcia, P., Dzul, A.: Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica 40(4), 603–612 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nešić, D., Teel, A.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE TAC 49(7), 1103–1122 (2004)

    MathSciNet  Google Scholar 

  22. Nešić, D., Teel, A.R., Carnevale, D.: Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE TAC 54(3), 619–624 (2009)

    MathSciNet  Google Scholar 

  23. Polyakov, A., Efimov, D., Perruquetti, W., Richard, J.-P.: Output stabilization of time-varying input delay systems using interval observation technique. Automatica 49(11), 3402–3410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE TAC 34, 435–443 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Sontag, E.D., Wang, Y.: New characterizations of input to state stability. IEEE TAC 41, 1283–1294 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Sontag, E.D.: Input to state stability. In: Levine, W.S. (ed.) The Control Systems Handbook: Control System Advanced Methods, 2nd edn, pp. 1034–1054. CRC Press, Boca Raton (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iasson Karafyllis .

Editor information

Editors and Affiliations

Appendix: Proof of Lemma 3.3

Appendix: Proof of Lemma 3.3

Let \( \sigma > 0 \), \( T_{H} > 0 \) be sufficiently small constants so that Lemma 3.1 holds. Let \( N \ge N^{ * } \) be an integer, where \( N^{ * } \) is the integer constant in Lemma 3.2. Let a partition of \( \Re_{ + } \) \( \left\{ {\tau_{i} } \right\}_{i = 0}^{\infty } \) with \( \mathop {\sup }\limits_{i \ge 0} \left( {\tau_{i + 1} - \tau_{i} } \right) \le T_{s} \), \( \xi \in B(\Re_{ + } ;\Re^{k} ) \) and consider a solution of (1.1), (1.2), (2.8), (2.9), (2.10) defined for all \( t \ge 0 \) and satisfying \( x(t) \in S_{1} \) for \( t \ge T \) for some \( T \ge 0 \). Since \( \left\{ {\tau_{i} } \right\}_{i = 0}^{\infty } \) is a partition of \( \Re_{ + } \), there exists an integer \( l \ge 0 \) such that \( \tau_{l} \ge r + T \). It follows that \( x(t) \in S_{1} \) for \( t \ge \tau_{l} - r \).

Definition (3.1) and inequality (3.2) in conjunction with (2.9) imply that \( z(\tau_{i} ) \in S_{2} \) for all integers \( i \ge 0 \). Therefore, Lemma 2.1 in conjunction with (2.8) implies that \( z(t) \in S_{2} \) for all \( t \in [\tau_{i} ,\tau_{i + 1} ) \). Define:

$$ L_{X} : = \sup \left\{ {\left| {f(x,u) - f(z,u)} \right|/\left| {x - z} \right|:\,x,z \in S_{2} \,,\,x \ne z\,,\,u \in U} \right\} $$
(A.1)

Equations (1.1), (2.8), the fact that \( x(t + \tau ) \in S_{1} \) for all \( t \ge \tau_{i} \) with \( i \ge l \), in conjunction with definition (A.1) imply that the following inequality holds for all \( t \in [\tau_{i} ,\tau_{i + 1} ) \) and for all integers \( i \ge l \):

$$ \left| {z(t) - x(t + \tau )} \right| \le \left| {z(\tau_{i} ) - x(\tau_{i} + \tau )} \right| + L_{X} \int_{{\tau_{i} }}^{t} {\left| {z(s) - x(s + \tau )} \right|ds} $$
(A.2)

A direct application of the Gronwall–Bellman inequality to (A.2) gives the following inequality for all \( t \in [\tau_{i} ,\tau_{i + 1} ) \) and for all integers \( i \ge l \):

$$ \left| {z(t) - x(t + \tau )} \right| \le \, \exp \left( {L_{X} T_{s} } \right)\left| {z(\tau_{i} ) - x(\tau_{i} + \tau )} \right| $$
(A.3)

Let \( \tilde{x}(t) \) denote the solution of (1.1) with initial condition \( \tilde{x}(\tau_{i} - r) = Q\left( {x(\tau_{i} - r) + \xi (\tau_{i} )} \right) \) corresponding to the same input \( u \). Lemma 3.2 implies the existence of a constant \( M_{4} > 0 \) such that:

$$ \left| {z(\tau_{i} ) - \tilde{x}(\tau_{i} + \tau )} \right| \le M_{4} \left( {\,\left| {Q\left( {x(\tau_{i} - r) + \xi (\tau_{i} )} \right)} \right| + \left\| {{\mathop{u}\limits^{\smile}}_{{\tau_{i} }} } \right\|\,} \right)/N $$
(A.4)

By virtue of the fact that \( x(t) \in S_{1} \) for all \( t \ge \tau_{i} - r \) with \( i \ge l \), in conjunction with definition (A.1), Eq. (1.1), inequality (2.5) and Lemma 2.1 (which implies that \( \tilde{x}(t) \in S_{2} \) for all \( t \ge \tau_{i} - r \) with \( i \ge l \)), we obtain the following inequality for all \( t \ge \tau_{i} - r \) with \( i \ge l \):

$$ \left| {\tilde{x}(t) - x(t)} \right| \le \left| {\xi (\tau_{i} )} \right| + L_{X} \int_{{\tau_{i} - r}}^{t} {\left| {\tilde{x}(s) - x(s)} \right|ds} $$
(A.5)

A direct application of the Gronwall–Bellman inequality to (A.2) gives the following inequality for all integers \( i \ge l \):

$$ \left| {\tilde{x}(\tau_{i} + \tau ) - x(\tau_{i} + \tau )} \right| \le \, \exp \left( {L_{X} (r + \tau )} \right)\left| {\xi (\tau_{i} )} \right| $$
(A.6)

Using (A.4), (A.6), (2.5) and the triangle inequality, we obtain the following inequality for all integers \( i \ge l \):

$$ \begin{array} {l} \left| {z(\tau_{i} ) - x(\tau_{i} + \tau )} \right|N \le M_{4} \left( {\,\left| {Q\left( {x(\tau_{i} - r) + \xi (\tau_{i} )} \right)} \right| + \left\| {{\mathop{u}\limits^{\smile}}_{{\tau_{i} }} } \right\|\,} \right) + N\,\exp \left( {L_{X} (r + \tau )} \right)\left| {\xi (\tau_{i} )} \right| \\ \quad \le M_{4} \left( {\,\left| {x(\tau_{i} - r)} \right| + \left\| {{\mathop{u}\limits^{\smile}}_{{\tau_{i} }} } \right\|\,} \right) + \left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\left| {\xi (\tau_{i} )} \right| \end{array} $$
(A.7)

Using (A.3), (A.7) we get for \( t \in [\tau_{i} ,\tau_{i + 1} ) \) and for all integers \( i \ge l \):

$$ \begin{array} {l} N\left| {z(t) - x(t + \tau )} \right| \le \, \exp \left( {L_{X} T_{s} } \right)M_{4} \left( {\,\left| {x(\tau_{i} - r)} \right| + \left\| {{\mathop{u}\limits^{\smile}}_{{\tau_{i} }} } \right\|\,} \right) \\ \quad + \exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\left| {\xi (\tau_{i} )} \right| \end{array} $$
(A.8)

Define:

$$ K: = \sup \left\{ {\left| {k(x) - k(z)} \right|/\left| {x - z} \right|\,:\,x,z \in S_{2} \,,\,x \ne z\,} \right\} $$
(A.9)

Definition (A.9) combined with (A.8), the fact that \( \mathop {\sup }\limits_{i \ge 0} \left( {\tau_{i + 1} - \tau_{i} } \right) \le T_{s} \) and the fact \( x(t + \tau ) \in S_{1} \) for all \( t \ge \tau_{i} \) with \( i \ge l \), directly implies the following estimate for all \( t \in [\tau_{i} ,\tau_{i + 1} ) \) and for all integers \( i \ge l \):

$$ \begin{aligned} & \left| {k(z(t)) - k(x(t + \tau ))} \right|\exp \left( {\sigma \,t} \right)N \le K\exp \left( {L_{X} T_{s} } \right)\left( {N\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right) \\ & \quad \exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{{\tau _{l} \le s \le t}} \left( {\left| {\xi (s)} \right|} \right) + KM_{4} \exp \left( {L_{X} T_{s} } \right)\,\exp \left( {\sigma \,(T_{s} + r + \tau )} \right) \\ & \mathop {\quad \sup }\limits_{{\tau _{l} - r - \tau \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) + KM_{4} \exp \left( {L_{X} T_{s} } \right)\, \\ & \quad \exp \left( {\sigma \,(T_{s} + r + \tau )} \right)\mathop {\sup }\limits_{{\tau _{i} - r - \tau \le s < t}} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) \\ \end{aligned} $$
(A.10)

Since the above inequality is independent of the integer \( i \ge l \), it follows that inequality (A.10) holds for \( t \ge \tau_{l} \). Define for all \( t \ge 0 \):

$$ q(t) = \left[ {t/T_{H} } \right]T_{H} $$
(A.11)

Combining (A.10) with definition (A.10) and definition (2.10), we obtain the following estimate for all \( t \ge jT_{H} \), where \( j \) is any integer with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \mathop {\sup }\limits_{{jT_{H} \le s \le t}} \left( {\left| {u(s) - k(x(q(s) + \tau ))} \right|\exp (\sigma \,s)} \right)N \\ \quad \le KM_{4} \exp \left( {L_{X} T_{s} } \right)\,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right)\mathop {\sup }\limits_{{\tau_{l} - r - \tau \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \\ \quad + KM_{4} \exp \left( {L_{X} T_{s} } \right)\,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right)\mathop {\sup }\limits_{{\tau_{i} - r - \tau \le s < t}} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) \\ \quad + K\,\exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{{\tau_{l} \le s \le t}} \left( {\left| {\xi (s)} \right|} \right) \\ \end{array} $$
(A.12)

Using (A.11), (A.12), the triangle inequality, (A.9) and the fact \( x(t + \tau ) \in S_{1} \) for all \( t \ge \tau_{i} \), we obtain for \( t \ge jT_{H} \), where \( j \) is any integer with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \mathop {\sup }\limits_{{jT_{H} \le s \le t}} \left( {\left| {u(s) - k(x(q(s) + \tau ))} \right|\exp (\sigma \,s)} \right)N \\ \quad \le KM_{4} \exp \left( {L_{X} T_{s} } \right)\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right)\mathop {\sup }\limits_{{\tau_{i} - r - \tau \le s < jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) \\ \quad + KM_{4} \exp \left( {L_{X} T_{s} } \right)\,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right)\mathop {\sup }\limits_{{jT_{H} \le s < t}} \left( {\left| {u(s) - k(x(q(s) + \tau ))} \right|\exp (\sigma \,s)} \right) \hfill \\ \quad + KM_{4} \exp \left( {L_{X} T_{s} } \right)\,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right)\left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right)\mathop {\sup }\limits_{{\tau_{l} - r - \tau \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \hfill \\ \quad + K\,\exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{{\tau_{l} \le s \le t}} \left( {\left| {\xi (s)} \right|} \right) \hfill \\ \end{array} $$

Selecting \( N > K\,\exp \left( {L_{X} T_{s} } \right)M_{4} \,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right) \), we obtain from the above estimate for all \( t \ge jT_{H} \), where j is any integer with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \left( {N - \tilde{K}} \right)\mathop {\sup }\limits_{{jT_{H} \le s \le t}} \left( {\left| {u(s) - k(x(q(s) + \tau ))} \right|\exp (\sigma \,s)} \right) \le \tilde{K}\mathop {\sup }\limits_{{\tau_{i} - r - \tau \le s < jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) \\ \quad + \tilde{K}\left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right)\mathop {\sup }\limits_{{\tau_{l} - r - \tau \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \\ \quad + K\,\exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{{\tau_{l} \le s \le t}} \left( {\left| {\xi (s)} \right|} \right) \\ \end{array} $$
(A.13)

where \( \tilde{K}: = K\,\exp \left( {L_{X} T_{s} } \right)M_{4} \,\exp \left( {\sigma \,(T_{H} + T_{s} + r + \tau )} \right) \). Using (A.13) and (3.3), we get the above estimate for all \( t \ge jT_{H} \), where \( j \) is any integer with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \left( {N - \tilde{K}} \right)\mathop {\sup }\limits_{{jT_{H} \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \le M_{2} \left( {N - \tilde{K}} \right)\exp \left( {\sigma \,jT_{H} } \right)\left| {x(jT_{H} + \tau )} \right| \\ \quad + M_{3} \tilde{K}\mathop {\sup }\limits_{{\tau_{i} - r - \tau \le s < jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) + M_{3} \tilde{K}\left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right)\mathop {\sup }\limits_{{\tau_{l} - r - \tau \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \\ \quad + M_{3} K\,\exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{{\tau_{l} \le s \le t}} \left( {\left| {\xi (s)} \right|} \right) \\ \end{array} $$
(A.14)

Using (A.13) and selecting \( N > \tilde{K} + \tilde{K}M_{3} \left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right) \), we get the above estimate for all \( t \ge jT_{H} \), where \( j \) is any integer with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \left( {N - \tilde{K} - \tilde{K}M_{3} \left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right)} \right)\mathop {\sup }\limits_{{jT_{H} \le s \le t}} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \le M_{3} \tilde{K}\mathop {\sup }\limits_{{ - \tau \le s < jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) \\ \quad M_{2} \left( {N - \tilde{K}} \right) + \tilde{K}M_{3} \left( {1 + K\,\exp \left( {\sigma \,T_{H} } \right)} \right)\mathop {\sup }\limits_{{ - \tau \le s \le jT_{H} }} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \\ \quad + M_{3} K\,\exp \left( {L_{X} T_{s} } \right)\left( {N\,\exp \left( {L_{X} (r + \tau )} \right) + M_{4} } \right)\exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{r \le s \le t} \left( {\left| {\xi (s)} \right|} \right) \\ \end{array} $$
(A.15)

Inequality (A.15) implies the existence of \( {\Lambda}_{1} \ge 1 \) (constant independent of \( j \)) for which the following inequality holds for \( t \ge 0 \) and for all integers \( j \) with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \mathop {\sup }\limits_{ - r - \tau \le s \le t} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \le {\Lambda}_{1} \mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {x(s + \tau )} \right|\exp (\sigma \,s)} \right) \\ + {\Lambda}_{1} \mathop {\sup }\limits_{{ - r - \tau \le s < jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma \,s)} \right) + {\Lambda}_{1} \exp \left( {\sigma \,t} \right)\mathop {\sup }\limits_{0 \le s \le t} \left( {\left| {\xi (s)} \right|} \right) \\ \end{array} $$
(A.16)

The definition of the norms \( \left\| {x_{t} } \right\| \) and \( \left\| {{\mathop{u}\limits^{\smile}}_{t} } \right\| \) give for all \( t \ge 0 \):

$$ \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {x_{s} } \right\|\exp (\sigma s)} \right) \le \, \exp \left( {\sigma (r + \tau )} \right)\mathop {\sup }\limits_{ - r - \tau \le s \le t} \left( {\left| {x\left( {\tau + s} \right)} \right|\exp (\sigma s)} \right) $$
(A.17)
$$ \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {{\mathop{u}\limits^{\smile}}_{s} } \right\|\exp (\sigma s)} \right) \le \, \exp \left( {\sigma (r + \tau )} \right)\mathop {\sup }\limits_{ - r - \tau \le s \le t} \left( {\left| {u(s)} \right|\exp (\sigma s)} \right) $$
(A.18)

When \( t \le jT_{H} \) we have from (A.18) that \( \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {{\mathop{u}\limits^{\smile}}_{s} } \right\|\exp (\sigma s)} \right) \le \, \exp \left( {\sigma (r + \tau )} \right)\mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma s)} \right) \). When \( t \ge jT_{H} \), we obtain from (A.9), (A.11), (A.13), (A.16), the facts that \( k(0) = 0 \), \( 0 \le s - q(s) \le T_{H} \), \( x(t) \in S_{1} \) for all \( t \ge jT_{H} \), the existence of a constant \( {\Lambda}_{2} \ge 1 \) (independent of \( j \)) for which the following inequalities hold for \( t \ge jT_{H} \):

$$ \begin{array} {l} \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {{\mathop{u}\limits^{\smile}}_{s} } \right\|\exp (\sigma s)} \right) \le {\Lambda}_{2} \exp (\sigma \,t)\mathop {\sup }\limits_{0 \le s \le t} \left( {\left| {\xi \left( s \right)} \right|} \right) \\ \quad + {\Lambda}_{2} \mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma s)} \right) + {\Lambda}_{2} \mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {x(\tau + s)} \right|\exp (\sigma s)} \right)\\ \end{array} $$

Combining the two cases (\( t \le jT_{H} \) and \( t \ge jT_{H} \)) and using (A.17), (A.18), we obtain the existence of a constant \( {\Lambda}_{3} \ge 1 \) (independent of \( j \)) for which the following inequality holds for all \( t \ge 0 \) and for all integers \( j \) with \( jT_{H} \ge \tau_{l} \):

$$ \begin{array} {l} \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {{\mathop{u}\limits^{\smile}}_{s} } \right\|\exp (\sigma s)} \right) + \mathop {\sup }\limits_{0 \le s \le t} \left( {\left\| {x_{s} } \right\|\exp (\sigma s)} \right) \le {\Lambda}_{3} \mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {u(s)} \right|\exp (\sigma s)} \right) \\ \quad + {\Lambda}_{3} \exp (\sigma \,t)\mathop {\sup }\limits_{0 \le s \le t} \left( {\left| {\xi (s)} \right|} \right) + {\Lambda}_{3} \mathop {\sup }\limits_{{ - r - \tau \le s \le jT_{H} }} \left( {\left| {x(\tau + s)} \right|\exp (\sigma s)} \right) \\ \end{array} $$
(A.19)

We notice that since \( \mathop {\sup }\limits_{i \ge 0} \left( {\tau_{i + 1} - \tau_{i} } \right) \le T_{s} \), the smallest the integer \( l \ge 0 \) with \( \tau_{l} \ge r + T \) also satisfies \( \tau_{l} \le r + T + T_{s} \). Therefore, we conclude that inequality (A.19) holds for all \( t \ge 0 \) and for all integers \( j \) with \( jT_{H} \ge r + T + T_{s} \). Inequality (3.6) is a direct consequence of estimate (A.19). The proof is complete. \( \triangleleft \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karafyllis, I., Krstic, M. (2017). Sampled-Data Stabilization of Nonlinear Delay Systems with a Compact Absorbing Set and State Measurement. In: Insperger, T., Ersal, T., Orosz, G. (eds) Time Delay Systems. Advances in Delays and Dynamics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-53426-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53426-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53425-1

  • Online ISBN: 978-3-319-53426-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics