Skip to main content

Prediction of Elevated Activity in Online Social Media Using Aggregated and Individualized Models

  • Chapter
  • First Online:
Trends in Social Network Analysis

Part of the book series: Lecture Notes in Social Networks ((LNSN))

Abstract

Social media provides a powerful platform for influencers to broadcast content to a large audience of followers. In order to reach the greatest number of users, an important first step is to identify times when a large portion of a target population is active on social media, which requires modeling the behavior of those individuals. We propose three methods for behavior modeling: a simple seasonality approach based on time-of-day and day-of-week, an autoregressive approach based on aggregate fluctuations from seasonality, and an aggregation-of-individuals approach based on modeling the behavior of individual users. The aggregation-of-individuals approach uses the framework of computational mechanics to automatically infer a state machine that describes the behavior of an individual based on his/her past behavior. We test these methods on data collected from a set of users on Twitter in 2011 and 2012. We find that the performance of the methods at predicting times of high activity depends strongly on the tradeoff between true and false positives, with no method dominating. Our results highlight the challenges and opportunities involved in modeling complex social systems, and demonstrate how influencers interested in forecasting potential user engagement can use complexity modeling to make better decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen, A.T., Dover, Y., Muchnik, L., Goldenberg, J.: Fresh is best: the effect of source activity on the decision to retransmit content in social media. Available at SSRN 1609611 (2014)

    Google Scholar 

  2. Toubia, O., Stephen, A.T.: Intrinsic vs. image-related utility in social media: why do people contribute content to twitter? Mark. Sci. 32 (3), 368–392 (2013)

    Google Scholar 

  3. Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333 (6051), 1878–1881 (2011)

    Article  Google Scholar 

  4. Grinberg, N., Naaman, M., Shaw, B., Lotan, G.: Extracting diurnal patterns of real world activity from social media. In: ICWSM (2013)

    Google Scholar 

  5. Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435 (7039), 207–211 (2005)

    Article  Google Scholar 

  6. Hodas, N.O., Lerman, K.: How visibility and divided attention constrain social contagion. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom), pp. 249–257. IEEE, New York (2012)

    Google Scholar 

  7. Hodas, N.O., Lerman, K.: Attention and visibility in an information-rich world. In: 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6. IEEE, New York (2013)

    Google Scholar 

  8. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 177–186. ACM, New York (2011)

    Google Scholar 

  9. Ver Steeg, G., Galstyan, A.: Information transfer in social media. In: Proceedings of the 21st International WWW Conference, pp. 509–518. ACM, New York (2012)

    Google Scholar 

  10. Darmon, D., Sylvester, J., Girvan, M., Rand, W.: Predictability of user behavior in social media: bottom-up v. top-down modeling. In: ASE/IEEE Int’l Conference on Social Computing, pp. 102–107 (2013)

    Google Scholar 

  11. Harada, J., Darmon, D., Girvan, M., Rand, W.: Forecasting high tide: predicting times of elevated activity in online social media. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 504–507. ACM, New York (2015)

    Google Scholar 

  12. Goh, K.-I., Barabási, A.-L.: Burstiness and memory in complex systems. EPL (Europhys. Lett.) 81 (4), 48002 (2008)

    Google Scholar 

  13. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497–506. ACM, New York (2009)

    Google Scholar 

  14. Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in twitter. In: Proceedings of the 21st International Conference on World Wide Web, pp. 251–260. ACM, New York (2012).

    Google Scholar 

  15. Bauckhage, C., Kersting, K., Hadiji, F.: Mathematical models of fads explain the temporal dynamics of internet memes. In: ICWSM (2013)

    Google Scholar 

  16. Bauckhage, C., Kersting, K., Rastegarpanah, B.: Collective attention to social media evolves according to diffusion models. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web, pp. 223–224 (2014)

    Google Scholar 

  17. Doulamis, A., Doulamis, N., Kollias, S.D.: An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources. IEEE Trans. Neural Netw. 14 (1), 150–166 (2003)

    Article  Google Scholar 

  18. Chang, B.R., Tsai, H.F.: Improving network traffic analysis by foreseeing data-packet-flow with hybrid fuzzy-based model prediction. Expert Syst. Appl. 36 (3), 6960–6965 (2009)

    Article  Google Scholar 

  19. Dalmazo, B.L., Vilela, J.P., Curado, M.: Predicting traffic in the cloud: a statistical approach. In: 2013 Third International Conference on Cloud and Green Computing (CGC), pp. 121–126. IEEE, New York (2013)

    Google Scholar 

  20. Tan, C., Lee, L., Pang, B.: The effect of wording on message propagation: topic-and author-controlled natural experiments on twitter. arXiv preprint arXiv:1405.1438 (2014)

    Google Scholar 

  21. Ma, Z., Sun, A., Cong, G.: Will this #hashtag be popular tomorrow? In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1173–1174. ACM, New York (2012)

    Google Scholar 

  22. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 57–58. ACM, New York (2011)

    Google Scholar 

  23. Petrovic, S., Osborne, M., Lavrenko, V.: Rt to win! predicting message propagation in twitter. In: ICWSM (2011)

    Google Scholar 

  24. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in twitter. ICWSM, vol. 10, pp. 355–358 (2010)

    Google Scholar 

  25. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: 2010 IEEE Second International Conference on Social Computing, pp. 177–184. IEEE, New York (2010)

    Google Scholar 

  26. Ruan, Y., Purohit, H., Fuhry, D., Parthasarathy, S., Sheth, A.: Prediction of topic volume on twitter. WebSci (short papers) (2012)

    Google Scholar 

  27. Alwagait, E., Shahzad, B.: Maximization of tweet’s viewership with respect to time. In: 2014 World Symposium on Computer Applications & Research (WSCAR), pp. 1–5. IEEE, New York (2014)

    Google Scholar 

  28. Raghavan, V., Steeg, G.V., Galstyan, A., Tartakovsky, A.G.: Modeling temporal activity patterns in dynamic social networks. IEEE Trans. Comput. Soc. Syst. 1, 89–107 (2014)

    Article  Google Scholar 

  29. Fan, J., Yao, Q.: Nonlinear Time Series. Springer, New York (2002)

    Google Scholar 

  30. Mathiesen, J., Angheluta, L., Ahlgren, P.T.H., Jensen, M.H.: Excitable human dynamics driven by extrinsic events in massive communities. Proc. Natl. Acad. Sci. 110 (43), 17259–17262 (2013)

    Article  Google Scholar 

  31. Hyndman, R.J., Khandakar, Y.: Automatic time series for forecasting: the forecast package for R. J. Stat. Softw. 27 (3), 1–22 (2008)

    Article  Google Scholar 

  32. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104 (3–4), 817–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grimmett, G., Stirzaker, D.: Probability and Random Processes, vol. 2. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  34. Caires, S., Ferreira, J.A.: On the nonparametric prediction of conditionally stationary sequences. Probability, Networks and Algorithms, pp. 1–32 (2003)

    Google Scholar 

  35. Littman, M.L., Sutton, R.S., Singh, S.P.: Predictive representations of state. In: NIPS, vol. 14, pp. 1555–1561 (2001)

    Google Scholar 

  36. Shalizi, C.R., Klinkner, K.L.: Blind construction of optimal nonlinear recursive predictors for discrete sequences. In: M. Chickering, J.Y. Halpern, (eds.) Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference (UAI 2004), pp. 504–511, Arlington, Virginia, 2004. AUAI Press, Arlington

    Google Scholar 

  37. Marton, K., Shields, P.C.: Entropy and the consistent estimation of joint distributions. Ann. Probab. 22, 960–977 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Breiman, L., Spector, P.: Submodel selection and evaluation in regression. The X-random case. Int. Stat. Rev. 60, 291 (1992)

    Article  Google Scholar 

  39. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  40. Haslinger, R., Klinkner, K.L., Shalizi, C.R: The computational structure of spike trains. Neural Comput. 22 (1), 121–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Leary, D.P.: Scientific Computing with Case Studies. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  42. Shalizi, C.R: Optimal nonlinear prediction of random fields on networks. Discret. Math. Theor. Comput. Sci. AB, 11–30 (2003); DMTCS Proceedings of the Discrete Models for Complex Systems (DMCS)

    Google Scholar 

  43. Shalizi, C.R.: Causal architecture, complexity and self-organization in the time series and cellular automata. PhD Thesis, University of Wisconsin–Madison (2001)

    Google Scholar 

  44. Barnett, N., Crutchfield, J.P.: Computational mechanics of input-output processes: structured transformations and the ε-transducer. arXiv preprint arXiv:1412.2690 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Darmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Harada, J., Darmon, D., Girvan, M., Rand, W. (2017). Prediction of Elevated Activity in Online Social Media Using Aggregated and Individualized Models. In: Missaoui, R., Abdessalem, T., Latapy, M. (eds) Trends in Social Network Analysis. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-53420-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53420-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53419-0

  • Online ISBN: 978-3-319-53420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics