Skip to main content

Quantum Correlations in Multipartite Quantum Systems

  • Chapter
  • First Online:
Lectures on General Quantum Correlations and their Applications

Part of the book series: Quantum Science and Technology ((QST))

  • 1768 Accesses

Abstract

We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a vast literature studying this gap and looking for more general types of Bell inequality which may close the gap; see [3].

  2. 2.

    Actually \(S(\rho _A|\rho _B)\) is always positive in classical setting, but can be negative for entangled states and took it a long time to understand this negativity; see [5].

  3. 3.

    We should stress that it is a natural requirement that correlation measurements should not increase under local operations: one should no be able to increase their correlation with someone far away only acting on their own system.

  4. 4.

    Note that the relative entropy can also be understood as a distance measure, even though technically it is not a genuine distance since it is not symmetric.

  5. 5.

    There are many different ways to define a norm for a matrix (or operator). One should first consider the p-norms of a vector \(\vec {v}\) given by \(||\vec {v}||=(\sum _i |v_i|^ p)^ {1/p}\) with \(v_i\) being the components of \(\vec {v}\) in some basis and \(p\ge 1\). For \(p=2\) we have the Euclidean norm. One can then define the induced norm for the matrix as the maximum norm the matrix can induce in a unit vector: \(||X||=\sup _{|\vec {v}|=1} ||X\vec {v}||\). Then given a vector p-norm vector we get a operator p-norm. Another possibility is to consider an m x n matrix as a mn vector and use an vector norm. These are usually called “entrywise” norms. A third possibility, the Schatten norms, is to apply the vector p-norm to the singular values of the matrix (the singular values are the square root of the eingenvalues of \(X^\dagger X\)). For \(p=2\) we have the Hilbert-Schmidt, also called Frobenius, norm which is equivalent to the \(p=2\) entrywise norm mentioned before. For \(p=1\) we have the trace norm and for \(p=\infty \) we have the spectral norm which is equivalent to the induced \(p=2\) norm and also called operator norm and given by the largest singular value.

  6. 6.

    This follows directly from the fact that the trace distance itself has a interpretation in terms of distinguishability: Suppose Alice prepares a quantum system in state \(\rho \) with probability 1/2 and in state \(\sigma \) with probability 1/2. She then gives the system to Bob, who performs a POVM measurement to distinguish the two states. It can be shown that Bob’s probability of correctly identifying which state Alice prepared is \(1/2+1/2||\rho -\sigma ||_1\) (see sec. 9.2 of [22]).

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  3. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  4. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  5. M. Horodecki, J. Oppenheim, A. Winter, Nature 436, 673 (2005)

    Article  ADS  Google Scholar 

  6. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  8. I. Chakrabarty, P. Agrawal, A.K. Pati, Eur. Phys. J. D 65, 605 (2011)

    Article  ADS  Google Scholar 

  9. S. Sazim, P. Agrawal. arXiv:1607.05155 [quant-ph]

  10. G.L. Giorgi, B. Bellomo, F. Galve, R. Zambrini, Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  11. M. Okrasa, Z. Walczak, EPL 96, 60003 (2011)

    Article  ADS  Google Scholar 

  12. C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  13. B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    Google Scholar 

  14. B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, P. Walther, Nat. Phys. 8, 666 (2012)

    Google Scholar 

  15. T. Tufarelli, D. Girolami, R. Vasile, S. Bose, G. Adesso, Phys. Rev. A 86, 052326 (2012)

    Article  ADS  Google Scholar 

  16. M. Piani, Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  17. X. Hu, H. Fan, D.L. Zhou, W.-M. Liu, Phys. Rev. A 87, 032340 (2013)

    Google Scholar 

  18. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78 (1997)

    Google Scholar 

  19. M. Ozawa, Phys. Lett. A 268, 158 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Tufarelli, T. MacLean, D. Girolami, R. Vasile, G. Adesso, J. Phys. A Math. Theor. 46, 275308 (2013)

    Article  ADS  Google Scholar 

  21. F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Phys. Rev. A 87, 064101 (2013)

    Google Scholar 

  22. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  23. T. Nakano, M. Piani, G. Adesso, Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  24. F. Ciccarello, T. Tufarelli, V. Giovannetti, New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  25. W. Roga, D. Spehner, F. Illuminati, J. Phys. A Math. Theor. 49 (2016)

    Google Scholar 

  26. S. Luo, S. Fu, Phys. Rev. A 82, 034302 (2010)

    Google Scholar 

  27. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. F.M. Paula, A. Saguia, T.R. de Oliveira, M.S. Sarandy, EPL 108, 10003 (2014)

    Article  ADS  Google Scholar 

  29. F.M. Paula, J.D. Montealegre, A. Saguia, T.R. de Oliveira, M.S. Sarandy, EPL 103, 50008 (2013)

    Google Scholar 

  30. B. Bellomo, G.L. Giorgi, F. Galve, R.L. Franco, G. Compagno, R. Zambrini, Phys. Rev. A 85, 032104 (2012)

    Google Scholar 

  31. T.R. Bromley, M. Cianciaruso, R.L. Franco, G. Adesso, J. Phys. A Math. Theor. 47, 405302 (2012)

    Google Scholar 

  32. K. Modi, V. Vedral, AIP Conf. Proc. 1384, 69 (2011)

    Article  ADS  Google Scholar 

  33. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  34. T.J. Osborne, F. Verstraete, Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  35. C. Lancien, S. Di Martino, M. Huber, M. Piani, Gerardo Adesso, Andreas Winter, Phys. Rev. Lett. 117, 060501 (2016)

    Article  ADS  Google Scholar 

  36. Y.-K. Bai, N. Zhang, M.-Y. Ye, Z.D. Wang, Phys. Rev. A 88, 012123 (2013)

    Article  ADS  Google Scholar 

  37. M. Koashi, A. Winter, Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. F.F. Fanchini, M.F. Cornelio, M.C. de Oliveira, A.O. Caldeira, Phys. Rev. A 84, 012313 (2011)

    Article  ADS  Google Scholar 

  39. G.L. Giorgi, Phys. Rev. A 84, 054301 (2011)

    Google Scholar 

  40. A. Streltsov, G. Adesso, M. Piani, D. Bruß, Phys. Rev. Lett. 109, 050503 (2012)

    Article  ADS  Google Scholar 

  41. H.C. Braga, C.C. Rulli, T.R. de Oliveira, M.S. Sarandy, Phys. Rev. A 86, 062106 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thanks Marcelo Sarandy for many discussion about discord and quantum correlation and Ernesto Galvão for carefully reading the first draft. I also acknowledge financial support from the Brazilian agencies CNPq, CAPES, FAPERJ, and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago R. de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Oliveira, T.R. (2017). Quantum Correlations in Multipartite Quantum Systems. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_5

Download citation

Publish with us

Policies and ethics