Skip to main content

Experimental Investigation of the Dynamics of Quantum Discord in Optical Systems

  • Chapter
  • First Online:
Lectures on General Quantum Correlations and their Applications

Part of the book series: Quantum Science and Technology ((QST))

  • 1761 Accesses

Abstract

One of the most remarkable properties in quantum systems is the existence of correlations without the classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  3. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  4. H. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 43, 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  6. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  7. B. Dakic et al., Quantum discord as resource for remote state preparation. Nature Phys. 8, 666–670 (2012)

    Article  ADS  Google Scholar 

  8. T. Yu, J.H. Eberly, Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  10. A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acín, Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  11. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  MATH  Google Scholar 

  12. B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Schumacher, M.D. Westmoreland, Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  14. S. Hamieh, R. Kobes, H. Zaraket, Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325 (2004)

    Article  ADS  Google Scholar 

  15. S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  16. M.D. Lang, C.M. Caves, Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  17. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  MATH  Google Scholar 

  18. M. Horodecki et al., Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  19. S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  20. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Dakić, V. Vedral, C̆. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Google Scholar 

  22. S. Luo, S. Fu, Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  23. M.-L. Hu, H. Fan, Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343–2353 (2012)

    Article  ADS  MATH  Google Scholar 

  24. G. Puentes, D. Voigt, A. Aiello, J.P. Woerdman, Tunable spatial decoherers for polarization-entangled photons. Opt. Lett. 31, 2057–2059 (2006)

    Article  ADS  Google Scholar 

  25. A. Aiello, G. Puentes, D. Voigt, A. Aiello, J.P. Woerdman, Maximally entangled mixed-state generation via local operations. Phys. Rev. A 75, 062118 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.J. Berglund, Quantum Coherence and Control in One- and Two-Photon Optical Systems (2000). arXiv:quant-ph/0010001

  27. J.-S. Xu et al., Robust bidirectional links for photonic quantum networks. Sci. Adv. 2, e1500672 (2016)

    Article  ADS  Google Scholar 

  28. J.-S. Xu et al., Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240502 (2009)

    Article  ADS  Google Scholar 

  29. J.-S. Xu et al., Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 105, 100502 (2010)

    Article  Google Scholar 

  30. J.-S. Xu et al., Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  31. L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  34. V. Vedral, B.M. Plenio, M.A. Rippin, P.L. Knight, Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. G. Lindblad, in Quantum Aspects, of Optical Communications-Lecture Notes in Physics, ed. by C. Bendjaballah, et al. (Springer, Singapore, 1991), pp. 71–80

    Google Scholar 

  36. J.-S. Xu et al., Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)

    Article  ADS  Google Scholar 

  37. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  38. D. Zhou, A. Lang, R. Joynt, Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process 9, 727–747 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Entanglement dynamics in superconducting qubits affected by local bistable impurities. Phys. Scr. T147, 014019 (2012)

    Google Scholar 

  40. P. Bordone, F. Buscemi, C. Benedetti, Effect of Markov and non-Markov classical noise on entanglement dynamics. Fluct. Noise Lett. T147, 014019 (2012)

    Google Scholar 

  41. R. Lo Franco, B. Bellomo, E. Andersson, G. Compagno, Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)

    Google Scholar 

  42. F. Altintas, A. Kurt, R. Eryigit, Classical memoryless noise-induced maximally discordant mixed separable steady states. Phys. Lett. A 377, 53–59 (2012)

    Article  ADS  Google Scholar 

  43. J.-S. Xu et al., Experimental recovery of qunatum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Google Scholar 

  44. B.-H. Liu et al., Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)

    Article  Google Scholar 

  45. M. Mannone, R. Lo Franco, G. Compagno, Comparison of non-Markovianity criteria in a qubit system under random external fields. Phys. Scr. T153, 014047 (2013)

    Article  ADS  Google Scholar 

  46. N. Gisin, R. Thew, Quantum communication. Nat. Photon 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  47. P. Kok et al., Linear optical quantum computing with photonnic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  48. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  49. R.-C. Ge, M. Gong, C.-F. Li, J.-S. Xu, G.-C. Guo, Quantum correlation and classical correlation dynamics in the spin-boson model. Phys. Rev. A 81, 064103 (2010)

    Article  ADS  Google Scholar 

  50. A. Shabani, D.A. Lidar, Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  51. C.A. Rodríguez-Rosario, G. Kimura, H. Imai, A. Aspuru-Guzik, Sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment. Phys. Rev. Lett. 106, 050403 (2011)

    Article  ADS  Google Scholar 

  52. M. Piani et al., All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106, 220403 (2011)

    Article  ADS  Google Scholar 

  53. A. Streltsov, H. Kampermann, D. Bruß, Interpreting quantum discord through quantum state merging. Phys. Rev. Lett. 106, 160401 (2011)

    Article  ADS  Google Scholar 

  54. G. Adesso et al., Experiemntal entanglement activation from discord in a programmable quantum measurement. Phys. Rev. Lett. 112, 140501 (2014)

    Article  ADS  Google Scholar 

  55. J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  56. T. Konrad et al., Evolution equation for quantum entanglement. Nat. Phys. 4, 99 (2011)

    Article  Google Scholar 

  57. O.J. Farías, C.L. Latune, S.P. Walborn, L. Davidovich, P.H.S. Ribeiro, Determining the dynamics of entanglement. Science 324, 1414 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Feng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, JS., Li, CF., Guo, GC. (2017). Experimental Investigation of the Dynamics of Quantum Discord in Optical Systems. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_21

Download citation

Publish with us

Policies and ethics