Skip to main content

The Sudden Change Phenomenon of Quantum Discord

  • Chapter
  • First Online:
Book cover Lectures on General Quantum Correlations and their Applications

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Even if the parameters determining a system’s state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  2. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  3. A. Shabani, D.A. Lidar, Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  4. H.M. Wiseman, Quantum discord is Bohr’s notion of non-mechanical disturbance introduced to counter the Einstein–Podolsky–Rosen argument. Ann. Phys. 338, 361 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. C.-J. Shan, W.-W. Cheng, J.-B. Liu, Y.-S. Cheng, T.-K. Liu, Scaling of geometric quantum discord close to a topological phase transition. Sci. Rep. 4, 4473 (2014)

    Article  Google Scholar 

  6. G.-M. Zeng, L.-A. Wu, H.-J. Xing, Symmetry restoration and quantumness reestablishment. Sci. Rep. 4, 6377 (2014)

    Article  Google Scholar 

  7. J. Li, T. Yu, H.-Q. Lin, J.Q. You, Probing the non-locality of Majorana fermions via quantum correlations. Sci. Rep. 4, 4930 (2014)

    Article  Google Scholar 

  8. J. Martin, V. Vennin, Quantum discord of cosmic inflation: Can we show that CMB anisotropies are of quantum-mechanical origin? Phys. Rev. D 93, 023505 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)

    MATH  Google Scholar 

  10. J. Preskill, Quantum Information and Computation. http://theory.caltech.edu/people/preskill/ph229/

  11. M.M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  12. A. Datta, A. Shaji, C.M. Caves, Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  13. V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  14. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)

    Article  ADS  MATH  Google Scholar 

  15. L. Roa, J.C. Retamal, M. Alid-Vaccarezza, Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)

    Article  ADS  Google Scholar 

  16. S. Pirandola, Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  17. S. Lloyd, V. Chiloyan, Y. Hu, S. Huberman, Z.-W. Liu, G. Chen, No Energy Transport Without Discord (2015). https://arxiv.org/abs/1510.05035

  18. C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, M. Gu, How discord underlies the noise resilience of quantum illumination. New J. Phys. 18, 043027 (2016)

    Article  ADS  Google Scholar 

  19. B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, P. Walther, Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  20. M. Piani, V. Narasimhachar, J. Calsamiglia, Quantumness of correlations, quantumness of ensembles and quantum data hiding. New J. Phys. 16, 113001 (2014)

    Article  ADS  Google Scholar 

  21. D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  22. N. Friis, M. Skotiniotis, I. Fuentes, W. Dür, Heisenberg scaling in Gaussian quantum metrology. Phys. Rev. A 92, 022106 (2015)

    Article  ADS  Google Scholar 

  23. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.D. Lang, C.M. Caves, Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  25. B. Li, Z.-X. Wang, S.-M. Fei, Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  26. M. Shi, F. Jiang, C. Sun, J. Du, Geometric picture of quantum discord for two-qubit quantum states. New J. Phys. 13, 073016 (2011)

    Article  ADS  Google Scholar 

  27. Y. Yao, H.-W. Li, Z.-Q. Yin, Z.-F. Han, Geometric interpretation of the geometric discord. Phys. Lett. A 376, 358 (2012)

    Article  ADS  MATH  Google Scholar 

  28. C. Liu, Y.-L. Dong, S.-Q. Zhu, Geometric discord for non-X states. Chin. Phys. B 23, 060307 (2014)

    Article  ADS  Google Scholar 

  29. Z. Huang, D. Qiu, P. Mateus, Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M.S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  31. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  32. A.K. Pal, I. Bose, Quantum discord in the ground and thermal states of spin clusters. J. Phys. B: At. Mol. Opt. Phys. 44, 045101 (2011)

    Article  ADS  Google Scholar 

  33. M.S. Sarandy, T.R. de Oliveira, L. Amico, Quantum discord in the ground state of spin chains. Int. J. Mod. Phys. B 27, 1345030 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S. Campbell, J. Richens, N. Lo, Gullo and T. Busch. Criticality, factorization, and long-range correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)

    Article  ADS  Google Scholar 

  35. G. Karpat, B. Çakmak, F.F. Fanchini, Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  36. Z. Xi, X.-M. Lu, Z. Sun, Y. Li, Dynamics of quantum discord in a quantum critical environment. J. Phys. B: At. Mol. Opt. Phys. 44, 215501 (2011)

    Article  ADS  Google Scholar 

  37. Y.-C. Li, H.-Q. Lin, J.-B. Xu, Dynamics of correlations and scaling behaviours in a spin-chain environment. EPL 100, 20002 (2012)

    Article  ADS  Google Scholar 

  38. L.-J. Tian, C.-Y. Zhang, L.-G. Qin, Sudden transition in quantum discord dynamics: role of three-site interaction. Chin. Phys. Lett. 30, 050303 (2013)

    Article  ADS  Google Scholar 

  39. X.-M. Lu, Z. Xi, Z. Sun, X. Wang, Geometric measure of quantum discord under decoherence. Quantum Inf. Comp. 10, 0994 (2010)

    MathSciNet  MATH  Google Scholar 

  40. L.-X. Jia, B. Li, R.-H. Yue, H. Fan, Sudden change of quantum discord under single qubit noise. Int. J. Quantum Inf. 11, 1350048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. F.-J. Jiang, H.-J. Lu, X.-H. Yan, M.-J. Shi, A symmetric geometric measure and the dynamics of quantum discord. Chin. Phys. B 22, 040303 (2013)

    Article  ADS  Google Scholar 

  42. J.-L. Guo, H. Li, G.-L. Long, Decoherent dynamics of quantum correlations in qubit–qutrit systems. Quantum Inf. Process. 12, 3421 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. L. Qiu, G. Tang, X. Yang, Z. Xun, B. Ye, A. Wang, Sudden change of quantum discord in qutrit-qutrit system under depolarising noise. Int. J. Theor. Phys. 53, 2769 (2014)

    Article  MATH  Google Scholar 

  44. B.-L. Ye, Y.-K. Wang, S.-M. Fei, One-way quantum deficit and decoherence for two-qubit X states. Int. J. Theor. Phys. 55, 2237 (2016)

    Article  MATH  Google Scholar 

  45. J.-D. Shi, D. Wang, Y.-C. Ma, L. Ye, Revival and robustness of Bures distance discord under decoherence channels. Phys. Lett. A 380, 843 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. H.P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  47. Z.-X. Man, Y.-J. Xia, N.B. An, The transfer dynamics of quantum correlation between systems and reservoirs. J. Phys. B: At. Mol. Opt. Phys. 44, 095504 (2011)

    Article  ADS  Google Scholar 

  48. F. Han, The dynamics of quantum correlation and its transfer in dissipative systems. Int. J. Theor. Phys. 50, 1785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. X.-X. Zhang, F.-L. Li, Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments. Chin. Phys. B 20, 110302 (2011)

    Article  ADS  Google Scholar 

  50. P. Huang, J. Zhu, X.-X. Qi, G.-Q. He, G.-H. Zeng, Different dynamics of classical and quantum correlations under decoherence. Quantum Inf. Process. 11, 1845 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Z.-D. Hu, J. Wang, Y. Zhang, Y.-Q. Zhang, Dynamics of nonclassical correlations with an initial correlation. J. Phys. Soc. Jpn. 83, 114004 (2014)

    Article  ADS  Google Scholar 

  52. H.-S. Xu, J.-B. Xu, Protecting quantum correlations of two qubits in independent non-Markovian environments by bang-bang pulses. J. Opt. Soc. Am. B 29, 2074 (2012)

    Article  ADS  Google Scholar 

  53. F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous dynamical decoupling. Phys. Rev. A 86, 052310 (2012)

    Article  ADS  Google Scholar 

  54. C. Addis, G. Karpat, S. Maniscalco, Time-invariant discord in dynamically decoupled systems. Phys. Rev. A 92, 062109 (2015)

    Article  ADS  Google Scholar 

  55. H. Song, Y. Pan, Z. Xi, Dynamical control of quantum correlations in a common environment. Int. J. Quantum Inf. 11, 1350012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. M.-L. Hu, H. Fan, Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851 (2012)

    Article  ADS  MATH  Google Scholar 

  57. L.C. Céleri, A.G.S. Landulfo, R.M. Serra, G.E.A. Matsas, Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 81, 062130 (2010)

    Article  ADS  Google Scholar 

  58. Z. Tian, J. Jing, How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264 (2012)

    Article  ADS  Google Scholar 

  59. M. Ramzan, Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature. Quantum Inf. Process. 12, 2721 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Y.Y. Xu, W.L. Yang, M. Feng, Dissipative dynamics of quantum discord under quantum chaotic environment. EPL 92, 10005 (2010)

    Article  ADS  Google Scholar 

  61. G. Karpat, Z. Gedik, Correlation dynamics of qubit–qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)

    Article  ADS  MATH  Google Scholar 

  62. J.-Q. Li, J.-Q. Liang, Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)

    Article  ADS  MATH  Google Scholar 

  63. C. Wang, C. Li, L. Nie, X. Li, J. Li, Classical correlation, quantum discord and entanglement for two-qubit system subject to heat bath. Opt. Commun. 284, 2393 (2011)

    Article  ADS  Google Scholar 

  64. L. Xu, J.B. Yuan, Q.S. Tan, L. Zhou, L.M. Kuang, Dynamics of quantum discord for two correlated qubits in two independent reservoirs at finite temperature. Eur. Phys. J. D 64, 565 (2011)

    Article  ADS  Google Scholar 

  65. Z.X. Man, Y.J. Xia, N.B. An, Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)

    Article  ADS  Google Scholar 

  66. X.Q. Yan, Z.L. Yue, Dynamics of quantum and classical correlations of a two-atom system in thermal reservoirs. Chaos Solitons Fractals 57, 117 (2013)

    Article  ADS  MATH  Google Scholar 

  67. B.-Y. Yang, M.-F. Fang, Y.-N. Guo, Dissipative dynamics of quantum discord of two strongly driven qubits. Int. J. Theor. Phys. 53, 921 (2014)

    Article  MATH  Google Scholar 

  68. M.-L. Hu, D.-P. Tian, Preservation of the geometric quantum discord in noisy environments. Ann. Phys. 343, 132 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. J.-Q. Li, J. Liu, J.-Q. Liang, Environment-induced quantum correlations in a driven two-qubit system. Phys. Scr. 85, 065008 (2012)

    Article  ADS  MATH  Google Scholar 

  70. J.-B. Yuan, L.-M. Kuang, J.-Q. Liao, Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B: At. Mol. Opt. Phys. 43, 165503 (2010)

    Article  ADS  Google Scholar 

  71. X.-P. Liao, J.-S. Fang, M.-F. Fang, B. Liu, Z. Huang, Entanglement and quantum discord dynamics of two atoms in a broadband squeezed vacuum bath. Int. J. Theor. Phys. 52, 1729 (2013)

    Article  Google Scholar 

  72. K. Berrada, Investigation of quantum and classical correlations in a quantum dot system under decoherence. Laser Phys. 23, 095201 (2013)

    Article  ADS  Google Scholar 

  73. P. Mazurek, K. Roszak, P. Horodecki, The decay of quantum correlations between quantum dot spin qubits and the characteristics of its magnetic field dependence. EPL 107, 67004 (2014)

    Article  ADS  Google Scholar 

  74. Q.-L. He, J.-B. Xu, Sudden transition and sudden change of quantum discord in dissipative cavity quantum electrodynamics system. J. Opt. Soc. Am. B 30, 251 (2013)

    Article  ADS  Google Scholar 

  75. V. Eremeev, N. Ciobanu, M. Orszag, Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network. Opt. Lett. 39, 2668 (2014)

    Article  ADS  Google Scholar 

  76. J.S. Sales, W.B. Cardoso, A.T. Avelar, N.G. de Almeida, Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED. Phys. A 443, 399 (2016)

    Article  MathSciNet  Google Scholar 

  77. Q.-L. He, J.-B. Xu, D.-X. Yao, Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide. Quantum Inf. Process. 12, 3023 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. N. Iliopoulos, A.F. Terzis, V. Yannopapas, E. Paspalakis, Two-qubit correlations via a periodic plasmonic nanostructure. Ann. Phys. 365, 38 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. M.F. Cornelio, O. Jiménez Farías, F.F. Fanchini, I. Frerot, G.H. Aguilar, M.O. Hor-Meyll, M.C. de Oliveira, S.P. Walborn, A.O. Caldeira, P.H. Souto Ribeiro, Emergence of the pointer basis through the dynamics of correlations. Phys. Rev. Lett. 109, 190402 (2012)

    Article  ADS  Google Scholar 

  80. K. Roszak, Ł. Cywinśki, The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes. EPL 112, 10002 (2015)

    Article  ADS  Google Scholar 

  81. W. Han, K.-X. Jiang, Y.-J. Zhang, Y.-J. Xia, Quantum speed limits for Bell-diagonal states. Chin. Phys. B 24, 120304 (2015)

    Article  ADS  Google Scholar 

  82. K. Kraus, General state changes in quantum theory. Ann. Phys. 64, 311 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. J. Maziero, The Kraus representation for the dynamics of open quantum systems. Rev. Bras. Ensino Fis. 38, e2307 (2016)

    Google Scholar 

  84. J. Maziero, Computing partial traces and reduced density matrices. Int. J. Mod. Phys. C 28, 1750005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  85. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 3 (Addison-Wesley Publishing Company, Massachusetts, 1965)

    MATH  Google Scholar 

  86. M. Piani, P. Horodecki, R. Horodecki, No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  87. S. Luo, W. Sun, Decomposition of bipartite states with applications to quantum no-broadcasting theorems. Phys. Rev. A 82, 012338 (2010)

    Article  ADS  Google Scholar 

  88. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  89. B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  90. V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  92. J. Maziero, Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)

    Article  ADS  Google Scholar 

  93. B. Aaronson, R. Lo Franco, G. Compagno, G. Adesso, Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  94. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. H. Ollivier, W.H. Zurek, Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  96. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  MATH  Google Scholar 

  97. S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  98. A. Brodutch, D.R. Terno, Quantum discord and local demons. Phys. Rev. A 81, 062103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  99. B. Dakić, V. Vedral, Č. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  100. C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  101. M.D. Lang, C.M. Caves, A. Shaji, Entropic measures of nonclassical correlations. Int. J. Quantum Inf. 09, 1553 (2011)

    Article  MATH  Google Scholar 

  102. F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  103. T. Nakano, M. Piani, G. Adesso, Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  104. D. Spehner, M. Orszag, Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. A. Farace, A. De Pasquale, L. Rigovacca, V. Giovannetti, Discriminating strength: a bona fide measure of non- classical correlations. New J. Phys. 16, 073010 (2014)

    Article  ADS  Google Scholar 

  106. W. Roga, S.M. Giampaolo, F. Illuminati, Discord of response. J. Phys. A: Math. Theor. 47, 365301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  107. U. Singh, A.K. Pati, Super quantum discord with weak measurements. Ann. Phys. 343, 141 (2014)

    Article  ADS  MATH  Google Scholar 

  108. S.J. Akhtarshenas, H. Mohammadi, S. Karimi, Z. Azmi, Computable measure of quantum correlation. Quantum Inf. Process. 14, 247 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. H. Cao, Z.-Q. Wu, L.-Y. Hu, X.-X. Xu, J.-H. Huang, An easy measure of quantum correlation. Quantum Inf. Process. 14, 4103 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. A.L.O. Bilobran, R.M. Angelo, A measure of physical reality. Europhys. Lett. 112, 40005 (2015)

    Article  ADS  Google Scholar 

  111. K.P. Seshadreesan, M. Berta, M.M. Wilde, Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A: Math. Theor. 48, 395303 (2015)

    Article  MATH  Google Scholar 

  112. L. Li, Q.-W. Wang, S.-Q. Shen, M. Li, Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. A. Brodutch, K. Modi, Criteria for measures of quantum correlations. Quantum Inf. Comp. 12, 0721 (2012)

    MathSciNet  MATH  Google Scholar 

  114. F.M. Paula, A. Saguia, T.R. de Oliveira, M.S. Sarandy, Overcoming ambiguities in classical and quantum correlation measures. EPL 108, 10003 (2014)

    Article  ADS  Google Scholar 

  115. S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  116. S. Luo, Q. Zhang, Observable correlations in two-qubit states. J. Stat. Phys. 136, 165 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. J. Maziero, L.C. Céleri, R.M. Serra, Symmetry Aspects of Quantum Discord (2010). https://arxiv.org/abs/1004.2082

  118. I. Marvian, R.W. Spekkens, Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    Article  ADS  Google Scholar 

  119. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  120. L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  121. R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  122. D.O. Soares-Pinto, M.H.Y. Moussa, J. Maziero, E.R. deAzevedo, T.J. Bonagamba, R.M. Serra, L.C. Céleri, Equivalence between Redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336 (2011)

    Article  ADS  Google Scholar 

  123. D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R.M. Serra, L.C. Céleri, On the quantumness of correlations in nuclear magnetic resonance. Phil. Trans. R. Soc. A 370, 4821 (2012)

    Article  ADS  MATH  Google Scholar 

  124. J. Maziero, R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T. Bonagamba, R. Sarthour, I. Oliveira, R. Serra, Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86 (2013)

    Article  ADS  Google Scholar 

  125. H.D. Zeh, On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  126. W.H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  127. W.H. Zurek, Quantum Darwinism. Nat. Phys. 5, 181 (2009)

    Article  Google Scholar 

  128. E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  129. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)

    MATH  Google Scholar 

  130. W.H. Zurek, Reduction of the wave packet: How long does it take?, in Frontiers of Nonequilibrium Statistical Physics, ed. by P. Meystre, M.O. Scully (Plenum, New York, 1984)

    Google Scholar 

  131. C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, A "Schrödinger Cat" superposition state of an atom. Science 272, 1131 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. A.C.S. Costa, R.M. Angelo, M.W. Beims, Monogamy and backflow of mutual information in non-Markovian thermal baths. Phys. Rev. A 90, 012322 (2014)

    Article  ADS  Google Scholar 

  133. M. Fuchs, J. Schliemann, B. Trauzettel, Ultra long spin decoherence times in graphene quantum dots with a small number of nuclear spins. Phys. Rev. B 88, 245441 (2013)

    Article  ADS  Google Scholar 

  134. F.M. Paula, I.A. Silva, J.D. Montealegre, A.M. Souza, E.R. deAzevedo, R.S. Sarthour, A. Saguia, I.S. Oliveira, D.O. Soares-Pinto, G. Adesso, M.S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)

    Article  ADS  Google Scholar 

  135. P.C. Obando, F.M. Paula, M.S. Sarandy, Trace-distance correlations for X states and emergence of the pointer basis in Markovian and non-Markovian regimes. Phys. Rev. A 92, 032307 (2015)

    Article  ADS  Google Scholar 

  136. F. Lastra, C.E. López, S.A. Reyes, S. Wallentowitz, Emergence of metastable pointer states basis in non-Markovian quantum dynamics. Phys. Rev. A 90, 062103 (2014)

    Article  ADS  Google Scholar 

  137. H.-P. Breuer, F. Petruccine, The theory of open quantum systems (Oxford University Press, Oxford, 2012)

    Google Scholar 

  138. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  139. B. You, L.-X. Cen, Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)

    Article  ADS  Google Scholar 

  140. B. Aaronson, R. Lo Franco, G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    Article  ADS  Google Scholar 

  141. T. Chanda, A.K. Pal, A. Biswas, A. Sen(De), U. Sen, Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)

    Article  ADS  Google Scholar 

  142. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  143. P. Deb, M. Banik, Role of complementary correlations in the evolution of classical and quantum correlations under Markovian decoherence. J. Phys. A: Math. Theor. 48, 185303 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. K. Roszak, L. Cywiński, The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes. EPL 112, 10002 (2015)

    Article  ADS  Google Scholar 

  145. B. Wang, Z.-Y. Xu, Z.-Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  146. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  147. L. Mazzola, J. Piilo, S. Maniscalco, Frozen discord in non-Markovian depolarizing channels. Int. J. Quant. Inf. 9, 981 (2011)

    Article  MATH  Google Scholar 

  148. J.-S. Xu, C.-F. Li, C.-J. Zhang, X.-Y. Xu, Y.-S. Zhang, G.-C. Guo, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)

    Article  ADS  Google Scholar 

  149. Z.Y. Xu, W.L. Yang, X. Xiao, M. Feng, Comparison of different measures for quantum discord under non-Markovian noise. J. Phys. A: Math. Theor. 44, 395304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  150. L. Chuan-Feng, W. Hao-Tian, Y. Hong-Yuan, G. Rong-Chun, G. Guang-Can, Non-Markovian dynamics of quantum and classical correlations in the presence of system-bath coherence. Chin. Phys. Lett. 28, 120302 (2011)

    Article  Google Scholar 

  151. C.-S. Yu, B. Li, H. Fan, The witness of sudden change of geometric quantum correlation. Quantum Inf. Comput. 14, 0454 (2013)

    MathSciNet  Google Scholar 

  152. M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  153. A.C.S. Costa, M.W. Beims, R.M. Angelo, Generalized discord, entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths and births (2016). https://arxiv.org/abs/1311.5702v2

  154. B.-C. Ren, H.-R. Wei, F.-G. Deng, Correlation dynamics of a two-qubit system in a Bell-diagonal state under non-identical local noises. Quantum Inf. Process. 13, 1175 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  155. P. Haikka, T.H. Johnson, S. Maniscalco, Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87, 010103(R) (2013)

    Article  ADS  Google Scholar 

  156. J.D. Montealegre, F.M. Paula, A. Saguia, M.S. Sarandy, One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  157. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  158. F. Ciccarello, T. Tufarelli, V. Giovannetti, Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  159. J. Maziero, Non-monotonicity of trace distance under tensor products. Braz. J. Phys. 45, 560 (2015)

    Article  ADS  Google Scholar 

  160. H. Yuan, L.-F. Wei, Geometric measure of quantum discord under decoherence and the relevant factorization law. Int. J. Theor. Phys. 52, 987 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  161. V. Eremeev, N. Ciobanu, M. Orszag, Thermal effects on the sudden changes and freezing of correlations between remote atoms in cavity QED network. Opt. Lett. 39, 2668 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Brazilian funding agencies CNPq (Grants No. 401230/2014-7, 445516/2014-3, 305086/2013-8, 441875/2014-9 and 303496/2014-2) and CAPES (Grant No. 6531/2014-08), the Brazilian National Institute of Science and Technology of Quantum Information (INCT/IQ). JM gratefully acknowledges the hospitality of the Physics Institute and Laser Spectroscopy Group at the Universidad de la República, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. Céleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Céleri, L.C., Maziero, J. (2017). The Sudden Change Phenomenon of Quantum Discord. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_15

Download citation

Publish with us

Policies and ethics