Skip to main content

Satellite Tracking of White-Tailed Sea Eagles in Mecklenburg-Western Pomerania and Brandenburg

  • Chapter
  • First Online:
Birds of Prey and Wind Farms

Abstract

The increase of wind power plants as a German strategy to develop green, renewable energy in order to overcome energy produced by nuclear power and fossil energy sources leads to a substantial collision risk for the white-tailed sea eagle. The aim of our study was to understand how frequently and under which circumstances eagles approach wind turbines in order to assess and minimize the collision risk in the future by means of satellite telemetry and behavioural observations. One territorial adult, two sub-adults and one immature bird have been fitted with satellite transmitters between 2007 and 2010. Additionally telemetry data of three adult birds and another 13 young eagles, which have been tagged for other projects between 2003 and 2010, has been evaluated for the first time in the present research project. In the evaluation no avoidance behaviour of the adult bird towards wind turbines could be identified for the different calculated home ranges by comparing average distances to random distances. The number of locations per km2 is significantly higher within the wind farm area than in the reference area (cropland without wind turbine). Thus on average, the adult bird returned more locations within the risk area than statistically expected. One of the three tagged eaglets has been recorded within a wind farm during the period of transmission. GPS data as well as visual observations have shown that the young bird repeatedly traversed the wind farm in the vicinity of its nest and showed no fear of the turbines. Although all three tagged young eagles (immature and sub-adult) had very large home ranges and might have crossed a number of wind farms, only one individual approached the risk area of a wind turbine. Among the attractive structures were: kettle holes, ponds, large bodies of water, perching trees on forest edges and local elevations. To estimate a possible collision risk with a wind turbine in the vicinity of the nest, the proportion of locations at a distance of 3000 m was looked at, a distance which is discussed in the recommendations for distances of wind turbines to important areas for birds by the Working Group of German State Bird Conservancies. The adult white-tailed sea eagle equipped with a satellite transmitter in this study showed only 17.3% of the locations in an area of 3000 m around the nest. Half (50%) of the localizations occur within a distance of 7486 m. The analysis of locations of another three territorial white-tailed sea eagles, which was satellite tagged for other studies, resulted in 80% locations in an area of 3000 m around the nest, 87% locations up to 3000 m and in one case even 98% of the recorded locations at distances up to 3000 m around the nest. The mean of all locations at distances from 50 m and up to 3000 m around the nest is 71% for all four white-tailed sea eagles. As a large proportion of the recorded locations of tagged adult birds can be found at a distance of 3000 m around the nest, the probability that the eagles enter the area of a wind turbine decreases significantly with increasing distance. If however, a preferred flight path towards a foraging habitat will be obstructed by a wind turbine, the probability of contact with wind turbines is increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht R, Knief W, Mertens I, Göttsche M, Götsche M (2006) Empfehlungen zur Berücksichtigung tierökologischer Belange bei Windenergieplanungen in Schleswig-Holstein. Landesamtes für Umwelt und Natur des Landes Schleswig-Holstein, Flintbek

    Google Scholar 

  • Altenkamp R, Stoewe D, Krone O (2007) Verlauf und Scheitern einer Brut des Seeadlers (Haliaeetus albicilla) in Berlin und Konsequenzen für den Schutz der Brutplätze. Berliner ornithologische Berichte 17:31–41

    Google Scholar 

  • Barrios L, Rodriguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore turbines. J Appl Ecol 41:72–81

    Google Scholar 

  • Bevanger K, Follestad A, Gjershaug JO, Halley D, Hansen F, Johnson L, May R, Nygård T, Pedersen HC, Reitan O, Steinheim Y (2008) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway. Status report, NINA Report, Trondheim, pp 355

    Google Scholar 

  • Bevanger K, Berntsen F, Clausen S, Dahl EL, Flagstad Ø, Follestad A, Halley D, Hanssen F, Hoel PL, Johnsen L, Kvaløy P, May R, Nygård T, Pedersen HC, Reitan O, Steinheim Y, Vang R (2009) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). Progress Report 2009. NINA Report 505, Trondheim, pp 70

    Google Scholar 

  • Bloom P, Clark WS, Kidd JW (2007) Capture techniques. In: Bird DM, Bildstein KL (eds) Raptor research and management techniques. Hancock house publisher, Surrey, Blaine

    Google Scholar 

  • Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázaret A (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv, doi:10.1016/j.biocon.2009.07.027

  • Dürr T (2012) Vogelverluste an WKA in Deutschland und Fledermausverluste weltweit. Summe der Funde seit 1989. Stand Dezember 2012. Daten aus dem Archiv der Staatlichen Vogelschutzwarte im Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg. Status: December 2012. http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/wka_vogel_de.xls, http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/wka_voegel_eu.xls

  • EG-Vogelschutzrichtlinie (2010): Richtlinie 2009/147/EG des Europäischen Parlaments und des Rates vom 30. November 2009 über die Erhaltung der wildlebenden Vogelarten. Anhang 1

    Google Scholar 

  • Fallen M, Puga JF, Tobias K, Jung C (2006) Hinweise zur Planung von Windenergieanlagen auf Waldstandorten. AG Windenergie, University of Kaiserslautern

    Google Scholar 

  • Farfán MA, Vargas JM, Duarte J (2009) What is the impact of wind farms on birds. A case study in southern Spain. Biodivers Conserv 18:3743–3758

    Google Scholar 

  • Follestad A, Flagstad Ø, Nygård T, Reitan O, Schulze J (2007) Vindkraft og fugl på Smøla 2003–2006. NINA Rapport 248, Trondheim, pp 78

    Google Scholar 

  • Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES) (2011) Windenergiereport Deutschland 2011. Fraunhofer Institut für Windenergie und Energiesystemtechnik, Bereich Energiewirtschaft & Netzbetrieb, Kassel. http://www.fraunhofer.de/content/dam/zv/de/fors. Assessed 30 June 2013

  • Garvin JC, Jennelle CS, Drake D, Grodsky SM (2011) Response of raptors to a windfarm. J Appl Ecol 48:199–209

    Google Scholar 

  • Grünkorn T, Diederichs A, Poszig D, Diederichs B, Nehls G (2009) Wie viele Vögel kollidieren mit Windenergieanlagen? Natur und Landschaft 84:309–314

    Google Scholar 

  • Hötker H, Thomsen K-M, Köster H (2004) Auswirkungen regenerativer Energiegewinnung auf die biologische Vielfalt am Beispiel der Vögel und der Fledermäuse – Fakten, Wissenslücken, Anforderungen an die Forschung, ornithologische Kriterien zum Ausbau von regenerativen Energiegewinnungsformen. Endbericht für das Bundesamt für Naturschutz, Förd. Nr. Z1.3-684 11-5/03. Michael-Otto-Institut im NABU, Bergenhusen, pp 80

    Google Scholar 

  • Hull CS, Murir S (2010) Search Areas for Monitoring Bird and Bat Carcasses at Wind Farms Using a Monte-Carlo Model. Aust J Envir Manage 17:77–87

    Google Scholar 

  • Illner H (2011) Comments on the report “Wind Energy Developments and Natura 2000”, edited by the European Commission in October 2010. http://www.abu-naturschutz.de/images/H_Illner_15Febr2011_comments_EU-Guidance_wind_turbines_NATURA_2000.pdf

  • Illner H (2012) Kritik an den EU-Leitlinien „Windenergie-Entwicklung und NATURA 2000“, Herleitung vogelartspezifischer Kollisionsrisiken an Windenergieanlagen und Besprechung neuer Forschungsarbeiten. Eulen-Rundblick Nr. 62:83–100  

    Google Scholar 

  • Katzner TE, Brandes D, Miller T, Lanzone M, Maisonneuve C, Tremblay JA, Mulvihill R, Merovich GT (2012) Topography drives migratory flight altitude of golden eagles: implications for on-shore wind energy development. J Appl Ecol 49:1178–1186

    Google Scholar 

  • Kenward RE (1983) A Manual for Wildlife Radio Tagging. Academic Press, London

    Google Scholar 

  • Krijgsveld KL, Akershoek K, Schenk F, Dijk F, Dirksen S (2009) Collision risk of birds with modern large wind turbines. Ardea 97:357–366  

    Google Scholar 

  • Krone O, Scharnweber C (2003) Two white-tailed sea eagles (Haliaeetus albicilla) collide with wind generators in northern Germany. J Raptor Res 37:174–176

    Google Scholar 

  • Krone O, Grünkorn T, Gippert M, Dürr T (2008) White-tailed Sea Eagles and wind power plants in Germany - preliminary results. In: Hötker H (ed) Birds of Prey and Wind Farms: Analysis of Problems and Possible Solutions. Documentation of an international workshop in Berlin, 21st and 22nd October 2008. http://bergenhusen.nabu.de/imperia/md/images/bergenhusen/bmuwindkraftundgreifwebsite/birds_of_prey_and_windfarms_documentation_2009.pdf, Assessed 30 Jun 2013

  • Krone O, Berger A, Schulte R (2009) Recording movement and activity pattern of a White-tailed Sea Eagle (Haliaeetus albicilla) by a GPS datalogger. J Ornithol 150:273–280

    Google Scholar 

  • Landesbund für Vogelschutz in Bayern (LBV) (2010) Literaturstudie über die Auswirkungen von WKA auf die Avifauna. Landesbund für Vogelschutz in Bayern, Hilpoltstein

    Google Scholar 

  • Länder-Arbeitsgemeinschaft der Vogelschutzwarten (LAG-VSW) (2007) Abstandsregelungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Berichte zum Vogelschutz 44:151–153

    Google Scholar 

  • Langston RWH, Pullan JD (2003) Wind farms and birds: an analysis of the effects of wind farms on birds, and guidance on environmental assessment criteria and site selection issues. Report written by BirdLife International on behalf of the Bern Convention, Sandy

    Google Scholar 

  • Madders M, Whitfield DP (2006) Upland raptors and the assessment of wind farm impacts. Ibis 148:43–56

    Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Google Scholar 

  • Martin GR, Katzir G (1999) Visual field in short-toed eagles Circaetus gallicus and the function of binocularity in birds. Brain Behav Evolut 53:55–66

    Google Scholar 

  • Martin GR, Shaw JM (2010) Bird collision with power lines: Failing to see the way ahead? Biol Conserv 143:2695–2702

    Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, London

    Google Scholar 

  • Orloff S, Flannery A (1992) Wind turbine effects on avian activity, habitat use and mortality in Altamont Pass and Solano County wind resource areas, 1989-1991. Prepared by BioSystems Analysis, Inc. for the California Energy Commission, Sacramento, California

    Google Scholar 

  • Pearce-Higgins JW, Leigh S, Langston RHW, Bainbridge IP, Bullman R (2009) The distribution of breeding birds around upland wind farms. J Appl Ecol 46:1323–1331

    Google Scholar 

  • Smallwood SK, Thelander CG (2004) Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final Report by BioResource Consultants to the California Energy Commission, Public Interest Energy Research-Environmental Area, Contract No. 500-01-019, pp 363

    Google Scholar 

  • Smallwood SK, Rugge L, Morrison ML (2009) Influence of Behavior on Bird Mortality in Wind Energy Developments. J Wildlife Manage 73:1082–1098

    Google Scholar 

  • Smallwood KS, Bell DA, Snyder SA, Didonato JE (2010) Novel Scavenger Removal Trials Increase Wind Turbine-Caused Avian Fatality Estimates. J Wildlife Manage 74: 1089–1097

    Google Scholar 

  • Swihart R, Slade N (1985a) Testing for independence of observations in animal movements. Ecology 66:1176–1184

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Nossentiner/Schwinzer Heide National Park Administration and the Müritz National Park Administration for the logistic support. We feel obliged to the State Forest Administrations of Brandenburg, Mecklenburg-Western Pomerania and Schleswig-Holstein and to all forestry offices providing us with game. Furthermore we would like to thank all farmers and wind farm operators for granting access to the wind farms. Special thanks are due to all helpers and members of staff supporting us in the project, especially to Mirjam Gippert and Heiner Schumann. Finally we are grateful to Hubertus Illner for helpful comments improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Krone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krone, O., Treu, G., Grünkorn, T. (2017). Satellite Tracking of White-Tailed Sea Eagles in Mecklenburg-Western Pomerania and Brandenburg. In: Hötker, H., Krone, O., Nehls, G. (eds) Birds of Prey and Wind Farms. Springer, Cham. https://doi.org/10.1007/978-3-319-53402-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53402-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53401-5

  • Online ISBN: 978-3-319-53402-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics