Skip to main content

Abstract

Electrochemical impedance spectroscopy (EIS) is a technique used in various fields of electrochemistry. It is frequently employed for the characterisation and diagnostics of electrochemical devices. Such devices involve a combination of electrochemical, electric, transportation, and thermodynamic processes. The true power of EIS lies in its capability to recognise and to analyse the majority of the inherent processes of an electrochemical device solely by employing directly measurable quantities, such as voltage and electric current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the concept of information theory, measurement is defined as a set of observations that reduces uncertainty where the result is expressed as a quantity [5]. Such a definition of a measurement process makes the distinction between a measurement and estimation somewhat vague. Throughout this book the term measurement, in the context of information theory, is used for describing the process of determining impedance values by means of EIS.

References

  1. Lasia, Andrzej. 2014. Electrochemical impedance spectroscopy and its applications. New York: Springer. doi:10.1007/978-1-4614-8933-7.

  2. Yuan, Xiao-Zi, Chaojie Sons, Haijiang Wang, and Jiujun Zhang. 2010. Electrochemical impedance spectroscopy in PEM fuel cells, fundamentals and applications. London: Springer.

    Book  Google Scholar 

  3. Orazem, Mark E., and Bernard Tribollet. 2008. Electrochemical impedance spectroscopy. New Jersey: Wiley. doi:10.1002/9780470381588.

  4. Schoukens, J., M. Vaes, and R. Pintelon. 2016. Linear system identification in a nonlinear setting: Nonparametric analysis of the nonlinear distortions and their impact on the best linear approximation. IEEE Control Systems 36 (3): 38–69. doi:10.1109/MCS.2016.2535918.

    Article  MathSciNet  Google Scholar 

  5. Hubbard, Douglas W. 2014. How to measure anything. New Jersey: Wiley.

    Google Scholar 

  6. Brunetto, Carmelo, Antonino Moschetto, and Giuseppe Tina. 2008. PEM fuel cell testing by electrochemical impedance spectroscopy. Electric Power System Research 79: 17–26.

    Article  Google Scholar 

  7. Wasterlain, Sébastien, Denis Candusso, Fabien Harel, Daniel Hissel, and Xavier François. 2011. Development of new test instruments and protocols for the diagnostic of fuel cell stacks. Journal of Power Sources 196 (12): 5325–5333.

    Article  Google Scholar 

  8. de Beer, Chris, Paul S. Barendse, and Pragasen Pillay. 2015. Fuel cell condition monitoring using optimized broadband impedance spectroscopy. IEEE Transactions on Industrial Electronics 62 (8): 5306–5316.

    Article  Google Scholar 

  9. Pintelon, Rik, and Johan Schoukens. 2001. System identification: A frequency domain approach. New York: IEEE Press.

    Google Scholar 

  10. Debenjak, Andrej., Pavle Boškoski, Bojan Musizza, Janko Petrovčič, and Đani Juričić. 2014. Fast measurement of proton exchange membrane fuel cell impedance based on pseudo-random binary sequence perturbation signals and continuous wavelet transform. Journal of Power Sources 254: 112–118. doi:10.1016/j.jpowsour.2013.12.094.

  11. Isermann, Rolf., and P. Ballé. . 1997. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice 5 (5): 709–719. doi:10.1016/S0967-0661(97)00053-1.

  12. de Bruijn, F.A., V.A.T. Dam, and G.J.M. Janssen. 2008. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 8 (1): 3–22. doi:10.1002/fuce.200700053.

    Article  Google Scholar 

  13. Schmittinger, Wolfgang, and Ardalan Vahidi. 2008. A review of the main parameters influencing long-term performance and durability of pem fuel cells. Journal of Power Sources 180 (1): 1–14.

    Article  Google Scholar 

  14. Colón-Mercado, Héctor R., and Branko N. Popov. 2006. Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources 155 (2): 253–263. doi:10.1016/j.jpowsour.2005.05.011.

    Article  Google Scholar 

  15. Borup, Rod, Jeremy Meyers, Bryan Pivovar, Yu Seung Kim, Rangachary Mukundan, Nancy Garland, Deborah Myers, Mahlon Wilson, Fernando Garzon, David Wood, Piotr Zelenay, Karren More, Ken Stroh, Tom Zawodzinski, James Boncella, James E. McGrath, Minoru Inaba, Kenji Miyatake, Michio Hori, Kenichiro Ota, Zempachi Ogumi, Seizo Miyata, Atsushi Nishikata, Zyun Siroma, Yoshiharu Uchimoto, Kazuaki Yasuda, Ken-ichi Kimijima, and Norio Iwashita. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews 107 (10): 3904–3951. doi:10.1021/cr050182l.

  16. Yu, Paul T., Zhongyi Liu, and Rohit Makharia. 2013. Investigation of carbon corrosion behavior and kinetics in proton exchange membrane fuel cell cathode electrodes. Journal of The Electrochemical Society 160 (6): F645–F650.

    Article  Google Scholar 

  17. Fairweather, Joseph D., Dusan Spernjak, Adam Z. Weber, David Harvey, Silvia Wessel, Daniel S. Hussey, David L. Jacobson, Kateryna Artyushkova, Rangachary Mukundan, and Rodney L. Borup. 2013. Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells. Journal of The Electrochemical Society 160 (9): F980–F993. doi:10.1149/2.024309jes.

    Article  Google Scholar 

  18. Farrell, C.G., C.L. Gardner, and M. Ternan. 2007. Experimental and modelling studies of CO poisoning in PEM fuel cells. Journal of Power Sources 171 (2): 282–293. doi:10.1016/j.jpowsour.2007.07.006.

    Article  Google Scholar 

  19. Cheng, Xuan, Zheng Shi, Lu Nancy Glass, Jiujun Zhang Zhang, Datong Song, Zhong-Sheng Liu, Haijiang Wang, and Jun Shen. 2007. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources 165 (2): 739–756.

    Article  Google Scholar 

  20. Yan, Wei-Mon, Hsin-Sen Chu, Lu Meng-Xi, Fang-Bor Weng, Guo-Bin Jung, and Chi-Yuan Lee. 2009. Degradation of proton exchange membrane fuel cells due to CO and CO\(_2\) poisoning. Journal of Power Sources 188 (1): 141–147.

    Article  Google Scholar 

  21. Postole, Georgeta, and Aline Auroux. 2011. The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: The bonding strength. International Journal of Hydrogen Energy 36 (11): 6817–6825. doi:10.1016/j.ijhydene.2011.03.018.

    Article  Google Scholar 

  22. Song, Juhyun, and Martin Z. Bazant. 2013. Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes. Journal of The Electrochemical Society 160 (1): A15–A24. doi:10.1149/2.023301jes.

    Article  Google Scholar 

  23. Steiger, Jens. 2015. Mechanisms of Dendrite Growth in Lithium Metal Batteries. PhD thesis, Fakultät für Maschinenbau Karlsruher Institut für Technologie.

    Google Scholar 

  24. Li, Hui, Yanghua Tang, Zhenwei Wang, Zheng Shi, Wu Shaohong, Datong Song, Jianlu Zhang, Khalid Fatih, Jiujun Zhang, Haijiang Wang, Zhongsheng Liu, Rami Abouatallah, and Antonio Mazza. 2008. A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources 178 (1): 103–117. doi:10.1016/j.jpowsour.2007.12.068.

    Article  Google Scholar 

  25. Yousfi-Steiner, Nadia, Philippe Moçotéguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides. 2008. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources 183 (1): 260–274.

    Google Scholar 

  26. Ous, T., and C. Arcoumanis. 2013. Degradation aspects of water formation and transport in proton exchange membrane fuel cell: A review. Journal of Power Sources 240: 558–582. doi:10.1016/j.jpowsour.2013.04.044.

    Article  Google Scholar 

  27. Yuan, Xiao-Zi, Haijiang Wang, Jian Colin Sun, and Jiujun Zhang. 2007. AC impedance technique in PEM fuel cell diagnosis - A review. International Journal of Hydrogen Energy 32: 4365–4380.

    Google Scholar 

  28. Wu, Jinfeng, Xiao Zi Yuan, Haijiang Wang, Mauricio Blanco, Jonathan J. Martin, and Jiujun Zhang. 2008. Diagnostic tools in PEM fuel cell research: Part I electrochemical techniques. International Journal of Hydrogen Energy 33 (6): 1735–1746.

    Google Scholar 

  29. Petrone, R., Z. Zheng, D. Hissel, M.C. Péra, C. Pianese, M. Sorrentino, M. Becherif, and N. Yousfi-Steiner. 2013. A review on model-based diagnosis methodologies for PEMFCs. International Journal of Hydrogen Energy 38 (17): 7077–7091. doi:10.1016/j.ijhydene.2013.03.106.

    Article  Google Scholar 

  30. Zheng, Z., R. Petrone, M.C. Péra, D. Hissel, M. Becherif, C. Pianese, N. Yousfi-Steiner, and M. Sorrentino. 2013. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. International Journal of Hydrogen Energy 38 (21): 8914–8926. doi:10.1016/j.ijhydene.2013.04.007.

    Article  Google Scholar 

  31. Niya, Seyed Mohammad Rezaei, and Mina Hoorfar. 2013. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique - A review. Journal of Power Sources 240: 281–293. doi:10.1016/j.jpowsour.2013.04.011.

    Article  Google Scholar 

  32. Fouquet, N., C. Doulet, C. Nouillant, G. Dauphin-Tanguy, and B. Ould-Bouamama. 2005. Model based PEM fuel cell state-of-health monitoring via AC impedance measurements. Journal of Power Sources 159: 905–913.

    Article  Google Scholar 

  33. Merida, W., D.A. Harrington, J.M. Le Canut, and G. McLean. 2006. Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy. Journal of Power Sources 161 (1): 264–274. doi:10.1016/j.jpowsour.2006.03.067.

    Article  Google Scholar 

  34. Le Canut, Jean-Marc, Rami M. Abouatallah, and David A. Harrington. 2006. Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stack by electrochemical impedance spectroscopy. Journal of The Electrochemical Society 153: A857–A864.

    Article  Google Scholar 

  35. Debenjak, Andrej, Matej Gašperin, Boštjan Pregelj, Maja Atanasijević-Kunc, Janko Petrovčič, and Vladimir Jovan. 2013. Detection of flooding and drying inside a PEM fuel cell stack. Strojniški vestnik - Journal of Mechanical Engineering 59 (1): 56–64. doi:10.5545/sv-jme.2012.640.

    Article  Google Scholar 

  36. Cruz-Manzo, Samuel, and Rui Chen. 2013. An electrical circuit for performance analysis of polymer electrolyte fuel cell stacks using electrochemical impedance spectroscopy. Journal of The Electrochemical Society 160 (10): F1109–F1115. doi:10.1149/2.025310jes.

    Article  Google Scholar 

  37. Itagaki, Masayuki, Keiichirou Honda, Yoshinao Hoshi, and Isao Shitanda. 2015. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. Journal of Electroanalytical Chemistry 737: 78–84. doi:10.1016/j.jelechem.2014.06.004. (Special issue in honor of Bernard Tribollet).

    Article  Google Scholar 

  38. Thanapalan, K., M. Bowkett, J. Williams, M. Hathway, and T. Stockley. 2014. Advanced EIS techniques for performance evaluation of Li-ion cells. IFAC Proceedings Volumes 47 (3): 8610–8615. doi:10.3182/20140824-6-ZA-1003.02463. (19th IFAC World Congress).

    Article  Google Scholar 

  39. Boškoski, Pavle, and Andrej Debenjak. 2014. Optimal selection of proton exchange membrane fuel cell condition monitoring thresholds. Journal of Power Sources 268: 692–699.

    Article  Google Scholar 

  40. Mileva Boshkoska, Biljana, Pavle Boškoski, Andrej Debenjak, and Đani Juričić. 2015. Dependence among complex random variables as a fuel cell condition indicator. Journal of Power Sources 284: 566–573. doi:10.1016/j.jpowsour.2015.03.044.

  41. Andrej Debenjak, Janko Petrovčič, Pavle Boškoski, Bojan Musizza, and Đani Juričić. 2015. Fuel cell condition monitoring system based on interconnected DC-DC converter and voltage monitor. IEEE Transactions on Industrial Electronics, 62 (8): 5293–5305, 2015. 10.1109/TIE.2015.2434792.

    Google Scholar 

  42. Pregelj, Boštjan, Andrej Debenjak, Gregor Dolanc, and Janko Petrovčič. 2017. A diesel-powered fuel cell APU – reliability issues and mitigation approaches. IEEE Transactions on Industrial Electronics, PP (99): 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavle Boškoski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Boškoski, P., Debenjak, A., Mileva Boshkoska, B. (2017). Introduction. In: Fast Electrochemical Impedance Spectroscopy . SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53390-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53390-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53389-6

  • Online ISBN: 978-3-319-53390-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics