An Online Data Validation Algorithm for Electronic Nose

  • Mina Mirshahi
  • Vahid Partovi NiaEmail author
  • Luc AdjengueEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10163)


An electronic nose (e-nose) is a device that analyzes the chemical components of an odour. The e-nose consists of an array of gas sensors for chemical detection, and a mechanism for pattern recognition to return the odour concentration. Odour concentration defines the identifiability and perceivability of an odour. Given that accurate prediction of odour concentration requires valid measurements, automatic assessment of sampled measurements is of prime importance. The impairment of the e-nose, and environmental factors (including wind, humidity, temperature, etc.) may introduce significant amount of noise. Inevitably, the pattern recognition results are affected. We propose an online algorithm to evaluate the validity of sensor measurements during the sampling before using the data for pattern recognition phase. The proposed algorithm is computationally efficient and straightforward to implement.


Artificial olfaction Computational complexity Electronic nose Gas sensor Outlier detection Robust covariance estimation 



The project was funded by the natural sciences and engineering research council of Canada (NSERC) through the industrial partnership Engage program. Vahid Partovi Nia is partially supported by the Canada excellence research chair in data science for real-time decision making.


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Artursson, T., Eklov, T., Lundstrom, I., Martensson, P., Sjostrom, M., Holmberg, M.: Drift correction methods for gas sensors using multivariate methods. J. Chemometr. 14, 711–723 (2000)CrossRefGoogle Scholar
  3. 3.
    Bermak, A., Belhouari, S.B., Shi, M., Martinez, D.: Pattern recognition techniques for odor discrimination in gas sensor array. Encycl. Sens. X, 1–17 (2006)Google Scholar
  4. 4.
    Brys, G., Hubert, M., Rousseeuw, P.J.: A robustification of independent component analysis. Chemometrics 19, 364–375 (2006)CrossRefGoogle Scholar
  5. 5.
    Carlo, S.D., Falasconi, M.: Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. Adv. Chem. Sens. 14, 305–326 (2012)Google Scholar
  6. 6.
    Chan, T.M.: Output-sensitive results on convex hulls, extreme points, and related problems. Discrete Comput. Geom. 16(4), 369–387 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Croux, C., Haesbroeck, G.: Principal components analysis based on robust estimators of the covariance or correlation matrix: infulence functions and efficiencies. Biometrika 87, 603–618 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dobkin, D.P., Reiss, S.P.: The complexity of linear programing. Theor. Comput. Sci. 11, 1–18 (1980)CrossRefzbMATHGoogle Scholar
  9. 9.
    Donoho, D.L.: Breakdown properties of multivariate location estimators. Ph.D. Qualifying Paper Harvard University (1982)Google Scholar
  10. 10.
    Du, Q., Fowler, J.E.: Low-complexity principal component analysis for hyperspectral image compression. Int. J. High Perform. Comput. Appl. 22, 438–448 (2008)CrossRefGoogle Scholar
  11. 11.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gardner, J., Bartlett, P.: A brief history of electronic noses. Sens. Actuators B: Chem. 18, 211–220 (1994)Google Scholar
  13. 13.
    Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  14. 14.
    Gupta, A.: Multivariate skew t-distribution. Statistics 37, 359–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gutierrez-Osuna, R.: Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2, 189–202 (2002)CrossRefGoogle Scholar
  16. 16.
    Holmes, M.P., Gray, A.G., Isbell, C.L.: Fast SVD for large-scale matrices. In: Workshop on Efficient Machine Learning at NIPS, vol. 58 (2007)Google Scholar
  17. 17.
    Hubert, M., Rousseeuw, P.J., Branden, K.V.: ROBPCA: a new approach to robust principal component analysis. Thechnometrics 47, 64–79 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hubert, M., Van der Veeken, S.: Outlier detection for skewed data. J. Chemom. 22, 235–246 (2008)CrossRefGoogle Scholar
  19. 19.
    Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52, 5186–5201 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  21. 21.
    Josse, J., Pagès, J., Husson, F.: Multiple imputation in principal component analysis. Adv. Data Anal. Classif. 5, 231–246 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kan, A.R., Telgen, J.: The complexity of linear programming. Stat. Neerl. 35(2), 91–107 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kermiti, M., Tomic, O.: Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 3, 218–228 (2003)CrossRefGoogle Scholar
  24. 24.
    Li, G., Chen, Z.: Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J. Am. Stat. Assoc. 80, 759–766 (1985)CrossRefzbMATHGoogle Scholar
  25. 25.
    McGinley, P.C., Inc, S.: Standardized odor measurement practices for air quality testing. In: Air and Waste Management Association Symposium on Air Quality Measurement Methods and Technology, San Francisco, CA (2002)Google Scholar
  26. 26.
    Mirshahi, M., Partovi Nia, V., Adjengue, L.: Statistical measurement validation with application to electronic nose technology. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, pp. 407–414 (2016)Google Scholar
  27. 27.
    Ottmann, T., Schuierer, S., Soundaralakshmi, S.: Enumerating extreme points in higher dimensions. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 562–570. Springer, Heidelberg (1995). doi: 10.1007/3-540-59042-0_105 CrossRefGoogle Scholar
  28. 28.
    Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S.: Drift compensation of gas sensor array data by orthogonal signal correction. J. Chemom. Intell. Lab. Syst. 100, 28–35 (2010)CrossRefGoogle Scholar
  29. 29.
    Persaud, K., Dodd, G.: Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299, 352–355 (1982)CrossRefGoogle Scholar
  30. 30.
    Prendergast, L.: A note on sensitivity of principal component subspaces and the efficient detection of influential observations in high dimensions. Electron. J. Stat. 2, 454–467 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minumum covariance determinant estimator. Technometrics 41, 212–223 (1999)CrossRefGoogle Scholar
  32. 32.
    Stahel, W.A.: Robust estimation: infinitesimal optimality and covariance matrix estimators. Ph.D. thesis, ETH, Zurich (1981)Google Scholar
  33. 33.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Zuppa, M., Distante, C., Persaud, K.C., Siciliano, P.: Recovery of drifting sensor responses by means of DWT analysis. J. Sens. Actuators 120, 411–416 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Industrial EngineeringPolytechnique MontrealMontrealCanada

Personalised recommendations