Near-Boolean Optimization: A Continuous Approach to Set Packing and Partitioning

  • Giovanni RossiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10163)


Near-Boolean functions essentially associate with every partition of a finite ground set the sum of the real values taken on blocks by an underlying set function. Given a family of feasible subsets of the ground set, the packing problem is to find a largest subfamily of pairwise disjoint family members. Through a multilinear polynomial whose variables are indexed by the elements of the ground set and correspond each to a unit membership distribution over those feasible subsets where their index is included, the problem is translated into a continuous version with the objective function taking values on peculiar collections of points in a unit hypercube. Extremizers are shown to include feasible solutions for the original combinatorial optimization problem, allowing for a gradient-based local search. Least-squares approximations with bounded degree and coalition formation games are also finally discussed.


Pseudo-Boolean function Möbius inversion Set packing Partition function Polynomial multilinear extension Local search 


  1. 1.
    Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Encyclopedia of Mathematics and its Applications, vol. 134. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rossi, G.: Continuous set packing and near-Boolean functions. In: Proceedings of 5th International Conference on Pattern Recognition Applications and Methods, pp. 84–96 (2016)Google Scholar
  5. 5.
    Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proceedings 33rd ACM Symposium on Theory of Computing, pp. 453–461 (2001)Google Scholar
  7. 7.
    Papadimitriou, C.: Computational Complexity. Addison Wesley, Boston (1994)zbMATHGoogle Scholar
  8. 8.
    Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15(1), 20–39 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135(1–2), 1–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  11. 11.
    Alidaee, B., Kochenberger, G., Lewis, K., Lewis, M., Wang, H.: A new approach for modeling and solving set packing problems. Eur. J. Oper. Res. 186, 504–512 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chandra, B., Halldórsson, M.M.: Greedy local improvement and weighted set packing. J. Algorithms 39(2), 223–240 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Aigner, M.: Combinatorial Theory. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rota, G.C.: On the foundations of combinatorial theory I: theory of Möbius functions. Z. Wahrscheinlichkeitsrechnung u. verw. Geb. 2, 340–368 (1964)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  16. 16.
    Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  17. 17.
    Hammer, P., Holzman, R.: Approximations of Pseudo-Boolean functions; applications to game theory. Math. Methods Oper. Res. - ZOR 36, 3–21 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stanley, R.: Modular elements of geometric lattices. Algebra Universalis 1, 214–217 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gilboa, I., Lehrer, E.: Global games. Int. J. Game Theory 20(2), 120–147 (1990)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gilboa, I., Lehrer, E.: The value of information - an axiomatic approach. J. Math. Econ. 20, 443–459 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stern, M.: Semimodular Lattices. Theory and Applications. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 3, Generating all Combinations and Partitions. Addison-Wesley, Boston (2005)zbMATHGoogle Scholar
  23. 23.
    Kung, J.P.S., Rota, G.C., Yan, C.H.: Combinatorics: The Rota Way. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rosas, M.H., Sagan, B.E.: Symmetric functions in noncommuting variables. Trans. Am. Math. Soc. 358, 215–232 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stanley, R.: Enumerative Combinatorics, vol. 2, 2nd edn. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  26. 26.
    Schrijver, A.: A Course in Combinatorial Optimization. Alexander Schrijver (2013).
  27. 27.
    Slikker, M.: Coalition formation and potential games. Games Econ. Beh. 37, 436–448 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roth, A.: The Shapley Value. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  29. 29.
    Bowles, S.: Microeconomics: Behavior, Institutions, and Evolution. Princeton University Press, Princeton (2004)Google Scholar
  30. 30.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Beh. 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core based on synergies among coalitions. Artif. Intel. 170, 607–619 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rahwan, T., Jenning, N.: An algorithm for distributing coalitional value calculations among cooperating agents. Artif. Intell. 171, 535–567 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rossi, G.: Multilinear objective function-based clustering. In: Proceedings of 7th International Joint Conference on Computational Intelligence, vol. 2(FCTA), pp. 141–149 (2015)Google Scholar
  34. 34.
    Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering - DISIUniversity of BolognaBolognaItaly

Personalised recommendations