Comparative Analysis of PRID Algorithms Based on Results Ambiguity Evaluation

  • V. RenòEmail author
  • A. Cardellicchio
  • T. Politi
  • C. Guaragnella
  • T. D’Orazio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10163)


The re-identification of a subject among different cameras (namely Person Re-Identification or PRID) is a task that implicitly defines ambiguities. Two individuals dressed in a similar manner or with a comparable body shape are likely to be misclassified by a computer vision system, especially when only poor quality images are available (i.e. the case of many surveillance systems). For this reason we introduce a method to find, exploit and classify ambiguities among the results of PRID algorithms. This approach is useful to analyze the results of a classical PRID pipeline on a specific dataset evaluating its effectiveness in re-identification terms with respect to the ambiguity rate (AR) value. Cumulative Matching Characteristic curves (CMC) can be consequently split according to the AR, using the proposed method to evaluate the performance of an algorithm in low, medium or high ambiguity cases. Experiments on state-of-art algorithms demonstrate that ambiguity-wise separation of results is an helpful tool in order to better understand the effective behaviour of a PRID approach.


  1. 1.
    Cardellicchio, A., D’Orazio, T., Politi, T., Renò, V.: An human perceptive model for person re-identification. In: VISAPP-International Conference on Computer Vision Theory and Applications-2015 (2015)Google Scholar
  2. 2.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)Google Scholar
  3. 3.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31 (2004)Google Scholar
  4. 4.
    Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.: Stel component analysis: Modeling spatial correlations in image class structure. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2044–2051. IEEE (2009)Google Scholar
  5. 5.
    Renò, V., Marani, R., D’Orazio, T., Stella, E., Nitti, M.: An adaptive parallel background model for high-throughput video applications and smart cameras embedding. In: Proceedings of the International Conference on Distributed Smart Cameras, ICDSC 2014, pp. 30:1–30:6. ACM, New York (2014)Google Scholar
  6. 6.
    Spagnolo, P., Leo, M., D’Orazio, T., Distante, A.: Robust moving objects segmentation by background subtraction. In: The International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) (2004)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  8. 8.
    Corvee, E., Bak, S., Bremond, F., et al.: People detection and re-identification for multi surveillance cameras. In: International Conference on Computer Vision Theory and Applications, VISAPP-2012 (2012)Google Scholar
  9. 9.
    Lu, J., Zhang, E.: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognit. Lett. 28, 2401–2411 (2007)CrossRefGoogle Scholar
  10. 10.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2360–2367. IEEE (2010)Google Scholar
  11. 11.
    Gheissari, N., Sebastian, T.B., Hartley, R.: Person re-identification using spatiotemporal appearance. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1528–1535. IEEE (2006)Google Scholar
  12. 12.
    Roy, A., Sural, S., Mukherjee, J.: A hierarchical method combining gait and phase of motion with spatiotemporal model for person re-identification. Pattern Recognit. Lett. 33, 1891–1901 (2012)CrossRefGoogle Scholar
  13. 13.
    D’Orazio, T., Guaragnella, C.: A graph-based signature generation for people re-identification in a multi-camera surveillance system. In: VISAPP, vol. 1, pp. 414–417 (2012)Google Scholar
  14. 14.
    Bauml, M., Stiefelhagen, R.: Evaluation of local features for person re-identification in image sequences. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillence (AVSS), pp. 291–296. IEEE (2011)Google Scholar
  15. 15.
    Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 649–656. IEEE (2011)Google Scholar
  16. 16.
    Hirzer, M., Roth, P.M., Köstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 780–793. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33783-3_56 CrossRefGoogle Scholar
  17. 17.
    Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2288–2295. IEEE (2012)Google Scholar
  18. 18.
    Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC, vol. 2, p. 6 (2010)Google Scholar
  19. 19.
    Layne, R., Hospedales, T.M., Gong, S., Mary, Q.: Person re-identification by attributes. In: BMVC, vol. 2, p. 8 (2012)Google Scholar
  20. 20.
    Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)Google Scholar
  21. 21.
    Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)Google Scholar
  22. 22.
    Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recogn. 48, 2993–3003 (2015)CrossRefGoogle Scholar
  23. 23.
    An, L., Chen, X., Yang, S.: Person re-identification via hypergraph-based matching. Neurocomputing 182, 247–254 (2016)CrossRefGoogle Scholar
  24. 24.
    Renò, V., Cardellicchio, A., Politi, T., Guaragnella, C., D’Orazio, T.: Exploiting ambiguities in the analysis of cumulative matching curves for person re-identification. In: ICPRAM 2016 - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, pp. 484–494 (2016)Google Scholar
  25. 25.
    Kviatkovsky, I., Adam, A., Rivlin, E.: Color invariants for person reidentification. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1622–1634 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593 (2013)Google Scholar
  27. 27.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), vol. 3. Citeseer (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. Renò
    • 1
    Email author
  • A. Cardellicchio
    • 2
  • T. Politi
    • 2
  • C. Guaragnella
    • 2
  • T. D’Orazio
    • 1
  1. 1.Institute of Intelligent Systems for Automation, Italian National Research CouncilBariItaly
  2. 2.Dipartimento di Ingegneria Elettrica e dellInformazionePolitecnico di BariBariItaly

Personalised recommendations