Advertisement

Computing the Number of Bubbles and Tunnels of a 3-D Binary Object

  • Humberto SossaEmail author
  • Hermilo Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10163)

Abstract

We present two formulations and two procedures that can be used for computing the number of bubbles and tunnels of a 3-D binary object. The first formulation is useful to determine the number of bubbles of an object, while the second one can be used to calculate the number of tunnels of an object. Both formulations are formally demonstrated. Examples are provided to numerically validate the functioning of both formulations. On the other hand, the first procedure allows obtaining the number of bubbles and tunnels of a 3-D object while the second procedure allows computing the number of bubbles and tunnels of several 3-D objects. Examples with 3-D images are provided to illustrate the utility and validity of the second procedure.

Keywords

Betti Number Euler Number Vertical Slice Human Trabecular Bone Maximal Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

H. Sossa thanks COFAA-IPN, SIP-IPN and CONACYT under Grants 20151187, 20161126, 155014 and 65 (Frontiers of Science), respectively, for the economic support to carry out this research. E. Sánchez thanks the Centro de Ciencias Básicas of the Universidad Autónoma de Aguascalientes for the support.

References

  1. 1.
    Uchiyama, T., Tanizawa, T., Muramatsu, H., Endo, N., Takahashi, H.E., Hara, T.: Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone 25(4), 487–491 (1989)CrossRefGoogle Scholar
  2. 2.
    Vogel, H.J., Roth, K.: Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24, 233–242 (2001)CrossRefGoogle Scholar
  3. 3.
    Velichko, A., Holzapfel, C., Siefers, A., Schladitz, K., Mücklich, F.: Unambiguous classification of complex microstructures by their three-dimensional parameters applied to graphite in cast iron. Acta Mater. 56, 1981–1990 (2008)CrossRefGoogle Scholar
  4. 4.
    Roque, W.L., de Souza, A.C.A., Barbieri, D.X.: The Euler-Poincaré characteristic applied to identify low bone density from vertebral tomographic images. Rev. Bras. Reumatol. 49(2), 140–152 (2009)CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  6. 6.
    Lin, X., Xiang, Sh., Gu, Y.: A new approach to compute the Euler number of 3D image. In: 3rd IEEE Conference on Industrial Electronics and Applications, pp. 1543–1546 (2008)Google Scholar
  7. 7.
    Lee, C.N., et al.: Winding and Euler numbers for 2D and 3D digital images, CVGIP: graph. Models Image Process. 53(6), 522–537 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, C.N.: Holes and genus of 2D and 3D digital images, CVGIP: graph. Models Image Process. 55(1), 20–47 (1993)CrossRefGoogle Scholar
  9. 9.
    Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771–784 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gray, S.B.: Local properties of binary images in two and three dimensions. IEEE Trans. Comput. C-20(5), 551–561 (1971)Google Scholar
  11. 11.
    Park, C.M., Rosenfeld, A.: Connectivity and genus in three dimension, TR-156. Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD (1971)Google Scholar
  12. 12.
    Lee, C.N., Rosenfeld, A.: Computing the Euler number of a 3d image. In: Proceedings of the IEEE First International Conference on Computer Vision, pp. 567–571 (1987)Google Scholar
  13. 13.
    Saha, P.K., Chaudhuri, B.B.: A new approach to computing the Euler characteristic. Pattern Recogn. 28(12), 1955–1963 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. C-18, 733–740 (1969)Google Scholar
  15. 15.
    Saha, P.K., Chaudhuri, B.B.: 3D Digital topology under binary transformation with applications. Comput. Vis. Image Underst. 63(3), 418–429 (1996)CrossRefGoogle Scholar
  16. 16.
    Morgenthaler, D.G.: Three-dimensional digital topology: the genus. TR-980 November 1980. Computer Vision Laboratory Computer Science Center B University of Maryland (1980)Google Scholar
  17. 17.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Inf. Control 51, 227–247 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bonnassie, A., et al.: Shape description of three-dimensional images based on medial axis. In: Proceedings of the 2001 International Conference on Image Processing, pp. 931–934 (2001)Google Scholar
  19. 19.
    Bonnassie, A., Peyrin, F., Attali, D.: A new method for analyzing local shape in three-dimensional images based on medial axis transformation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33(4), 700–705 (2003)CrossRefGoogle Scholar
  20. 20.
    Toriwaki, J., Yonekura, T.: Euler number and connectivity indexes of a three dimensional digital picture. Forma 17, 183–209 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lobregt, S., Verbeek, P.W., Groen, F.C.A.: Three-dimensional skeletonization: principle and algorithm. IEEE Trans. Pattern Anal. Mach. Intell. PQMI-2(1), 75–77 (1980)Google Scholar
  22. 22.
    Schladitz, K., Ohser, J., Nagel, W.: Measuring intrinsic volumes in digital 3d images. In: Kuba, A., Nyúl, László, G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 247–258. Springer, Heidelberg (2006). doi: 10.1007/11907350_21 CrossRefGoogle Scholar
  23. 23.
    Lin, X.Z., Sha, Y., Ji, J.W., Wan, J.B.: Image Euler number calculating for intelligent counting. In: Proceedings of the Seventh International Conference on Electronic Measurement and Instruments (ICEMI 2005), August 2005, vol. 8, pp. 642–645. International Academic Publishers/World Publishing Corporation, Beijing (2005)Google Scholar
  24. 24.
    Lin, X.Z., Wang, Y.M., Sha, Y., Ji, J.W.: A new approach to compute the Euler number of 2d image. In: Proceedings of the International Conference on Sensing, Computing and Automation (ICSCA 2006), May 2006, pp. 1376–1379. Watam Press, Chongqing (2006)Google Scholar
  25. 25.
    Toriwaky, J., Yoshida, H.: Fundamentals of Digital Image Processing. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Sánchez, H., Sossa, H., Braumann, U.-D., Bribiesca, E.: The Euler-Poincaré formula through contact surfaces of voxelized objects. J. Appl. Res. Technol. 11, 55–78 (2013)Google Scholar
  27. 27.
    Yonekura, T., Toriwaki, J., Fukumura, T., Yokoi, S.: Topological properties of three-dimensional digitized picture data (1)-connectivity and Euler number. Paper of the Professional Group on Pattern Recognition and Learning, The Institute of Electronics and Communication Engineers of Japan (IECE, Denshi-Tsushin Gakkai), PRL80-1 (1980). (in Japanese)Google Scholar
  28. 28.
    Yonekura, T., Toriwaki, J., Fukumura, T., Yokoi, S.: On connectivity and Euler Number of three dimensional digitized binary pictures. Trans. IECE E63(11), 815–816 (1980). JapanGoogle Scholar
  29. 29.
    Yonekura, T., Yokoi, S., Toriwaki, J., Fukumura, T.: Connectivity and Euler number of figures in the digitized three-dimensional space. Trans. IECE (Denshi-Tsushin Gakkai Ronbunshi), Japan, J65-D(1), 80–87 (1982). (in Japanese)Google Scholar
  30. 30.
    Ohser, J., Nagel, W., Schladitz, K.: The Euler number of discretised sets – surprising results in three dimensions. Image Anal. Stereol. 22, 11–19 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)Google Scholar
  32. 32.
    He, L., Chao, Y., Suzuki, K.: A survey of labeling algorithms. In: Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent Systems (SCIS & ISIS 2008), September 17–21, 2008, Nagoya University, Nagoya, Japan, pp. 1293–1298 (2008)Google Scholar
  33. 33.
    He, L., Chao, Y., Suzuki, K.: An efficient first-scan method for label-equivalence-based labeling algorithms. Pattern Recogn. Lett. 31, 28–35 (2010)CrossRefGoogle Scholar
  34. 34.
    He, L., Chao, Y., Suzuki, K.: A run-based one and a half scan connected-component labeling algorithm. Int. J Pattern Recogn. Artif. Intell. 24, 557–579 (2010)CrossRefGoogle Scholar
  35. 35.
    Sutheebanjard, Ph., Premchaiswadi, W.: Efficient scan mask techniques for connected components labeling algorithm. EURASIP J. Image Video Process. 2011, 14 (2011). doi: 10.1186/1687-5281-2011-14 CrossRefGoogle Scholar
  36. 36.
    Lifeng, H., Xiao, Z., Suzuki, K.: A new two-scan algorithm for labeling connected components in binary images. In: Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2012, pp. 1141–1146 (2012)Google Scholar
  37. 37.
    Grana, C., Montangero, M., Borghesani, D.: Optimal decision trees for local image processing algorithms. Pattern Recogn. Lett. 33, 2302–2310 (2012)CrossRefGoogle Scholar
  38. 38.
    He, L.F., Chao, Y., Suzuki, K.: An algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28, 468–478 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lifeng, H., Xiao, Z., Yuyan, C., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23, 943–951 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lifeng, H., Yuyan, C.: A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing. IEEE Trans. Image Process. 24, 2725–2735 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chang, W.-Y., Chiu, Ch.-Ch., Yang, J.-H.: Block-based connected-component labeling algorithm using binary decision trees. Sensors 15, 23763–23787 (2015)CrossRefGoogle Scholar
  42. 42.
    Soosa, H.: On the computation of the number of bubbles and tunnels of a 3-d binary object. In: 5th International Conference on Pattern Recognition Applications and Methods, Roma, Italia, 24–26 February, pp. 17–23 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional-CICMexico CityMexico
  2. 2.Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations