Advertisement

Fundamentals of Nonparametric Bayesian Line Detection

  • Anne C. van RossumEmail author
  • Hai Xiang Lin
  • Johan Dubbeldam
  • H. Jaap van den Herik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10163)

Abstract

Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite mixture model and uses a Dirichlet Process as a prior. Gibbs sampling over non-unique parameters as well as over clusters is performed to fit lines of a fixed length, a variety of orientations, and a variable number of data points. Bayesian inference over data is optimal given a model and noise definition. Initial computer experiments show promising results with respect to clustering performance indicators such as the Rand Index, the Adjusted Rand Index, the Mirvin metric, and the Hubert metric. In future work, this mathematical foundation can be used to extend the algorithms to inference over multiple line segments and multiple volumetric objects.

Keywords

Bayesian nonparametrics Line detection 

References

  1. 1.
    Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2, 1152–1174 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blackwell, D., MacQueen, J.B.: Ferguson distributions via Pólya urn schemes. Ann. stat. 1, 353–355 (1973)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bolles, R.C., Fischler, M.A.: A RANSAC-based approach to model fitting and its application to finding cylinders in range data. IJCAI 1981, 637–643 (1981)Google Scholar
  4. 4.
    Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis, vol. 40. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  5. 5.
    Buntine, W.L.: Operations for learning with graphical models. JAIR 2, 159–225 (1994)Google Scholar
  6. 6.
    Chen, H., Meer, P., Tyler, D.E.: Robust regression for data with multiple structures. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–1069. IEEE (2001)Google Scholar
  7. 7.
    Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ewens, W.J.: Population genetics theory-the past and the future. In: Lessard, S. (ed.) Mathematical and Statistical Developments of Evolutionary Theory, pp. 177–227. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Fienberg, S.E., et al.: When did Bayesian inference become “Bayesian”? Bayesian Anal. 1(1), 1–40 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    de Finetti, B.: Foresight its logical laws its subjective sources. In: Kyburg, H.E., Smokler, H.E. (eds.) Studies in Subjective Probability, pp. 93–158. Wiley, New York (1992)Google Scholar
  11. 11.
    Gael, J.V., Teh, Y.W., Ghahramani, Z.: The infinite factorial hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 1697–1704 (2008)Google Scholar
  12. 12.
    Gallo, O., Manduchi, R., Rafii, A.: CC-RANSAC: fitting planes in the presence of multiple surfaces in range data. Pattern Recogn. Lett. 32(3), 403–410 (2011)CrossRefGoogle Scholar
  13. 13.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ghahramani, Z., Griffiths, T.L.: Infinite latent feature models and the Indian buffet process. In: Advances in Neural Information Processing Systems, pp. 475–482 (2005)Google Scholar
  15. 15.
    Hough, P.V.: Method and Means for Recognizing Complex Patterns, December 1962. https://www.google.com/patents/US3069654, patent US 3069654 A
  16. 16.
    Jain, S., Neal, R.M.: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. J. Comput. Graph. Stat. 13(1) (2004)Google Scholar
  17. 17.
    Kwon, S.W., Bosche, F., Kim, C., Haas, C.T., Liapi, K.A.: Fitting range data to primitives for rapid local 3D modeling using sparse range point clouds. Autom. Constr. 13(1), 67–81 (2004)CrossRefGoogle Scholar
  18. 18.
    MacEachern, S.N., Müller, P.: Estimating mixture of Dirichlet process models. J. Comput. Graph. Stat. 7(2), 223–238 (1998)Google Scholar
  19. 19.
    Minka, T.: Bayesian linear regression. Technical report, Citeseer (2000)Google Scholar
  20. 20.
    Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)MathSciNetGoogle Scholar
  21. 21.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  22. 22.
    Rasmussen, C.E.: The infinite Gaussian mixture model. NIPS 12, 554–560 (1999)Google Scholar
  23. 23.
    van Rossum, A.C., Lin, H.X., Dubbeldam, J., van den Herik, H.J.: Nonparametric Bayesian line detection - towards proper priors for robotic computer vision. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, pp. 119–127 February 2016Google Scholar
  24. 24.
    Sudderth, E.B., Jordan, M.I.: Shared segmentation of natural scenes using dependent Pitman-Yor processes. In: Advances in Neural Information Processing Systems, pp. 1585–1592 (2009)Google Scholar
  25. 25.
    Vasudevan, S., Gächter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots - an object based approach. Robot. Auton. Syst. 55(5), 359–371 (2007)CrossRefGoogle Scholar
  26. 26.
    Zellner, A.: Optimal information processing and Bayes’s theorem. Am. Stat. 42(4), 278–280 (1988)MathSciNetGoogle Scholar
  27. 27.
    Zhang, W., Kôsecká, J.: Nonparametric estimation of multiple structures with outliers. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2005–2006. LNCS, vol. 4358, pp. 60–74. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70932-9_5 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anne C. van Rossum
    • 1
    • 2
    • 3
    Email author
  • Hai Xiang Lin
    • 1
    • 2
    • 3
  • Johan Dubbeldam
    • 1
    • 2
    • 3
  • H. Jaap van den Herik
    • 1
    • 2
    • 3
  1. 1.Distributed Organisms B.V.RotterdamThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.Leiden UniversityLeidenThe Netherlands

Personalised recommendations