The Frasassi Caves: A “Classical” Active Hypogenic Cave

  • Sandro GaldenziEmail author
  • Daniel S. Jones
Part of the Cave and Karst Systems of the World book series (CAKASYWO)


The Frasassi caves present a unique opportunity to study sulfuric acid speleogenesis in a large karst system that contains active sulfidic processes as well as relict features produced by past speleogenetic episodes. The caves consist of a network of ramifying, mainly subhorizontal passages that reach more than 30 km in total length, and are organized in superimposed and interconnected levels. Sulfidic groundwaters are accessible in the lowermost levels. The water chemistry in the shallow phreatic zone is influenced by mixing phenomena between the sulfidic groundwaters and descending oxygenated water and, to some extent, gas exchange with the cave atmosphere. The sulfidic waters are corrosive with respect to limestone, with average limestone dissolution rates around 100 mm 10−3 year−1 for submerged tablets. The release of gases to the air also causes wall corrosion (linear corrosion rate up to 85 mm 10−3 year−1), which produces gypsum replacement crusts above the water table. Morphological and isotopic analyses show that large relict gypsum deposits in the upper dry levels were created by the same mechanism. Sulfide-oxidizing chemosynthetic bacteria living in the cave produce organic matter and support a rich and diverse ecosystem in the sulfidic branches, and these microorganisms contribute to sulfur cycling and cave formation processes. The evolution of the older cave levels during the Pleistocene was a complex result of changing regional geomorphological and hydrogeological regimes as well as local factors that affect water movement and gas exchange in the shallow phreatic zone within the cave.


Frasassi caves Hypogenic caves Sulfidic water Apennine Italy 


  1. Ambrosetti P, Carraro F, Deiana G, Dramis F (1982) Il sollevamento dell’Italia Centrale tra il Pleistocene inferiore e il Pleistocene medio. CNR, Progetto Finalizzato “Geodinamica”, Publ 513 II:219–223Google Scholar
  2. Bartolini C, D’Agostino N, Dramis F (2003) Topography, exhumation, and drainage network evolution of the Apennines. Episodes 23(3):212–217Google Scholar
  3. Bertolani M, Garuti G, Rossi A, Bertolani Marchetti M (1977) Motivi di interesse mineralogico e petrografico nel complesso carsico Grotta Grande del Vento-Grotta del Fiume. Le Grotte d’Italia s IV 6:109–144Google Scholar
  4. Bocchini A, Coltorti M (1990) Il complesso carsico Grotta del Fiume Grotta Grande del Vento e l’evoluzione geomorfologica della Gola di Frasassi. In: Galdenzi S, Menichetti M (eds) Il carsismo della Gola di Frasassi. Atti del Convegno Nazionale, San Vittore Genga, September 1988. Mem Ist It Speleol, s II, vol 4, pp 155–180Google Scholar
  5. Boston P, Curnutt J, Gomez E, Schubert K, Strader B (2009) Patterned growth in extreme environments. In: Proceedings of the third IEEE international conference on space mission challenges for information technology, 2009, Citeseer, pp 221–226Google Scholar
  6. Caprari M, Galdenzi S, Nanni T, Ramazzotti S, Vivalda P (2001) La sorgente di Gorgovivo: analisi idrogeologica finalizzata all’individuazione delle zone di tutela, rispetto e protezione. Mem Soc Geol It 56:157–169Google Scholar
  7. Ciancetti GF, Pennacchioni E (1993) Idrologia superficiale ed alimentazione della falda dell’area carsica di Frasassi. Geologia applicata ed idrogeologia 28:285–293Google Scholar
  8. Ciccacci S, D’Alessandro L, Dramis F, Fredi P, Pambianchi G (1985) Geomorphological and neotectonic evolution of the Umbria-Marche Ridge, Northern Sector. Stud Geol Camerti 10:7–15Google Scholar
  9. Coltorti M, Dramis F (1988) The significance of stratified slope waste deposits in the Quaternary of Umbria-Marche Apennines (Central Italy). Zeitschrift für Geomorphologie, Suppl Bd 71:59–70Google Scholar
  10. Cyr AJ, Granger DE (2008) Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology 36(2):103–106CrossRefGoogle Scholar
  11. D’Agostino N, Dramis F, Funiciello R, Jackson JA (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophysical J Intern 147:475–497CrossRefGoogle Scholar
  12. Galdenzi S (1990) Un modello genetico per la Grotta Grande del Vento. In: Galdenzi S, Menichetti M (eds) Il carsismo della Gola di Frasassi. Atti del Convegno Nazionale, San Vittore di Genga, September 1988. Mem Ist It Speleol, s II, vol 4, pp 123–142Google Scholar
  13. Galdenzi S (2012) Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications. Intern J Speleol 41(3):149–159CrossRefGoogle Scholar
  14. Galdenzi S, Campagnoli A (2015) Piano quotato dell’acquifero carsico di Frasassi. In: De Nitto L et al (eds) Atti 22nd Cogresso Nazionale di Speleologia, Pertosa-Auletta (SA), 2015. Mem Ist It Speleol, s II, vol 29, pp 375–380Google Scholar
  15. Galdenzi S, Maruoka T (2003) Gypsum deposits in the Frasassi caves, Central Italy. J Cave Karst Studies 65:111–125Google Scholar
  16. Galdenzi S, Menichetti M (1995) Occurrence of hypogenic caves in a karst region: examples from central Italy. Environ Geol 26:39–47CrossRefGoogle Scholar
  17. Galdenzi S, Cocchioni M, Morichetti L, Amici V, Scuri S (2008) Sulfidic ground-water chemistry in the Frasassi caves, Italy. J Cave Karst Stud 70:94–107Google Scholar
  18. Galdenzi S, Menichetti M, Forti P (1997) La corrosione di placchette calcaree ad opera di acque sulfuree: dati sperimentali in ambiente ipogeo. In: Jeannin PY (ed) Proceedings of the 12nd international congress of speleology, La Chaux-de-Fonds, vol 1, pp 187–190Google Scholar
  19. Galdenzi S, Menichetti M, Sarbu S, Rossi A (1999) Frasassi caves: a biogenic hypogean karst system? In: Audra P (ed) Proceedings European Conference Karst 99. Université de Provence, Etudes de Géographie physique, suppl 28, pp 101–106Google Scholar
  20. Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6:158–170CrossRefGoogle Scholar
  21. Jones DS, Lyon EH, Macalady JL (2008) Geomicrobiology of biovermiculations from the Frasassi cave system, Italy. J Cave Karst Stud 70:78–93Google Scholar
  22. Jones DS, Polerecky L, Galdenzi S, Dempsey BA, Macalady JL (2015) Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chem Geol 410:21–27Google Scholar
  23. Jones DS, Schaperdoth I, Macalady JL (2014) Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. Geomicrobiol J 31:194–204CrossRefGoogle Scholar
  24. Jones DS, Schaperdoth I, and Macalady JL (2016). Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms. ISME J. doi: 10.1038/ismej.2016.74
  25. Lyon E, Koffman B, Meyer K, Cleaveland L, Mariani S, Galdenzi S, Macalady J (2004) Geomicrobiology of the Frasassi Caves. In: Galdenzi S (ed) Frasassi 1989–2004: Gli sviluppi nella ricerca, Consorzio Frasassi, pp 152–157Google Scholar
  26. Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2:590–601CrossRefGoogle Scholar
  27. Macalady JL, Hamilton TL, Grettenberger CL, Jones DS, Tsao LE, Burgos WD (2013) Energy, ecology and the distribution of microbial life. Phil Trans R Soc B 368:20120383CrossRefGoogle Scholar
  28. Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous microbial biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414CrossRefGoogle Scholar
  29. Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72:5596–5609CrossRefGoogle Scholar
  30. Mariani S, Mainiero M, Barchi M, van der Borg K, Vonhof H, Montanari A (2007) Use of speleologic data to evaluate Holocene uplifting and tilting: an example from the Frasassi anticline (northeastern Apennines, Italy). Earth Planet Sci Lett 257:313–328CrossRefGoogle Scholar
  31. McCauley R, Jones D, Schaperdoth I, Steinberg L, Macalady J (2010) Metabolic Strategies in energy-limited microbial communities in the anoxic subsurface (Frasassi Cave System, Italy). In: AGU fall meeting abstracts, 2010, p 0317Google Scholar
  32. Menichetti M, Chirenco MI, Onac B, Bottrell S (2008) Depositi di gesso nelle grotte del M.Cucco e della Gola di Frasassi, Considerazioni sulla speleogenesi. In: Atti 20th Cogresso Nazionale di Speleologia, Iglesias 2007. Mem Ist It Speleol, s II, vol 21, pp 308–325Google Scholar
  33. Sarbu SM, Galdenzi S, Menichetti M, Gentile G (2000) Geology and biology of the Frasassi caves in Central Italy, an ecological multi-disciplinary study of a hypogenic underground ecosystem. In: Wilkens H et al (eds) Ecosystems of the world. Elsevier, New York, pp 359–378Google Scholar
  34. Taddeucci A, Tuccimei P, Voltaggio M (1992) Studio geocronologico del complesso carsico “Grotta del Fiume–Grotta Grande del Vento” (Gola di Frasassi, AN) e indicazioni paleoambientali. Il Quaternario 5:213–222Google Scholar
  35. Tazioli GS, Cocchioni M, Coltorti M, Dramis F, Mariani M (1990) Circolazione idrica e chimismo delle acque sotterranee dell’area carsica di Frasassi nelle Marche. In: Galdenzi S, Menichetti M (eds) Il carsismo della Gola di Frasassi. Atti del Convegno Nazionale, San Vittore di Genga, September 1988. Mem Ist It Speleol, s II, vol 4, pp 93-108Google Scholar
  36. Vlasceanu L, Sarbu SM, Engel AS, Kinkle BK (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol J 17:125–139CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.JesiItaly
  2. 2.BioTechnology Institute & Department of Earth SciencesUniversity of MinnesotaMinneapolisUSA

Personalised recommendations