Advertisement

Hypogene Speleogenesis in the Guadalupe Mountains, New Mexico and Texas, USA

  • Harvey R. DuChene
  • Arthur N. PalmerEmail author
  • Margaret V. Palmer
  • J. Michael Queen
  • Victor J. Polyak
  • David D. Decker
  • Carol A. Hill
  • Michael Spilde
  • Paul A. Burger
  • Douglas W. Kirkland
  • Penelope Boston
Chapter
  • 1.1k Downloads
Part of the Cave and Karst Systems of the World book series (CAKASYWO)

Abstract

The Guadalupe Mountains consist of an uplift of Permian carbonate shelf deposits in a semiarid landscape. A variety of speleogenetic processes, mostly hypogene, have made them one of the world’s best-known cave regions. The most notable caves are Carlsbad Cavern, which contains the largest known cave room in the USA, and Lechuguilla Cave, now the world’s 7th longest. Because the caves are no longer active, there was early confusion about their origin. This was resolved when long-dormant sulfuric acid processes were recognized, with H2S supplied by nearby oil fields. Potassium-argon dating of the by-product mineral alunite in the Guadalupes indicates speleogenetic ages from 12 to 4 million years, decreasing with lower elevation. Caves show abundant evidence for subaerial corrosion, both by sulfuric acid and carbonic acid in water films. Many seemingly phreatic features have resulted from this subaerial process. Microbial alteration of bedrock has contributed to weathering. There is evidence that isolated caves of greater age, lined by large scalenohedral calcite, were formed by supercritical CO2 in deep thermal water.

Keywords

Sulfuric acid speleogenesis Structural control Alunite dating Supercritical CO2 Microbial effects 

References

  1. André BJ, Rajaram H (2005) Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems. Water Resour Res 41(1)Google Scholar
  2. André L, Audigane P, Azaroual M, Menjoz A (2007) Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers Manag 48(6):1782–1797CrossRefGoogle Scholar
  3. André L, Azaroual M, Menjoz A (2010) Numerical simulations of the thermal impact of supercritical CO2 Injection on chemical reactivity in a carbonate saline reservoir. Transp Porous Med 82:247–274CrossRefGoogle Scholar
  4. Bretz JH (1949) Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57(5):447–463CrossRefGoogle Scholar
  5. Burger PA (2009) Structural and facies control of hypogenic karst development in the Guadalupe Mountains, New Mexico, USA. In: NCKRI symposium 1 advances in hypogene karst studies. National Cave and Karst Institute, Carlsbad, New Mexico, pp 60–70Google Scholar
  6. Burger PA (2016) The influence of syndepositional faulting and breccia zones on hypogene cave development in the Guadalupe Mountains, New Mexico. National Cave and Karst Institute (In Press)Google Scholar
  7. Burke WH, Denison RE, Hethreington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variations of seawater 87Sr/86Sr throughout phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  8. Chamberlin RM, Chapin CE, McIntosh WC (2002) Westward migrating ignimbrite calderas and a large radiating mafic dike swarm of Oligocene age, central Rio Grande Rift, New Mexico: Surface expression of an upper mantle diapir?. Geological Society of America Annual Meeting, Denver COGoogle Scholar
  9. Chapin CE, Cather SM (1994) Tectonic setting of the axial basins of the northern and central Rio Grande Rift. In: Keller GR, Cather SM (eds) Basins of the rio grande Rift: structure, stratigraphy, and tectonic setting. Geological Society of America Special Paper, vol 291, pp 5–25Google Scholar
  10. Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ (1995) Bacteria, fungi, and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25(1):2–8CrossRefGoogle Scholar
  11. Davis DB (1973) Sulfur in Cottonwood Cave, Eddy County, New Mexico. National Speleol Soc Bull 35(3):89–95Google Scholar
  12. Davis DG (1980) Cave development in the Guadalupe Mountains: a critical review of recent hypotheses. National Speleol Soc Bull 42(3):42–48Google Scholar
  13. Davis DG (2000) Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J Cave Karst Stud 62(2):147–157Google Scholar
  14. Davis DG, Palmer MV, Palmer AN (1990) Extraordinary subaqueous speleothems in Lechuguilla Cave, New Mexico. National Speleol Soc Bull 52:70–86Google Scholar
  15. Decker DD, Polyak VJ, Asmerom Y (2015) Depth and timing of calcite spar and ‘spar cave’ genesis: Implications for landscape evolution studies. Geological Society of America, GSA Special Publication 516—Caves and Karst Across TimeGoogle Scholar
  16. Decker DD, Polyak VJ, Asmerom Y (2016) A supercritical CO2 hypogene speleogenesis model: the origin of spar caves and cave spar in the Guadalupe Mountains, USA. National Cave and Karst Research Institute Deep Karst Symposium proceedings, Carlsbad, New Mexico USAGoogle Scholar
  17. Domingo C, García-Carmona J, Loste E, Fanovich A, Fraile J, GómezMorales J (2004) Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. J Cryst Growth 271(1):268–273CrossRefGoogle Scholar
  18. DuChene HR (2000) Bedrock features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J Cave Karst Stud 62(2):109–119Google Scholar
  19. DuChene HR, Cunningham KI (2006) Tectonic influences on speleogenesis in the Guadalupe Mountains, New Mexico and Texas. In: Land L, Lueth VW, Raatz W, Boston P, Love DL (eds) Caves and karst of southeastern New Mexico: Socorro, New Mexico, New Mexico Geological Society 57th annual field conference, pp 211–218Google Scholar
  20. Dunham RJ (1972) Capitan reef, New Mexico and Texas—facts and questions to aid interpretation and group discussion. Permian Basin Section-SEPM Publication, vol 72–14, p 297Google Scholar
  21. Dublyansky YV (2000) Dissolution of carbonates by geothermal waters. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis—evolution of Karst Aquifers. National Speleological Society, Huntsville, pp 158–159Google Scholar
  22. Eaton GP (1986) A tectonic redefinition of the Southern Rocky Mountains. Tectonophysics 132:163–193CrossRefGoogle Scholar
  23. Eaton GP (1987) Topography and origin of the southern Rocky Mountains and Alvarado Ridge. In: Coward M, Dewey JF, Hancock L (eds) Continental extension tectonics, vol 28. Geological Society Special Publication, pp 355–369Google Scholar
  24. Egemeier SJ (1973) Cavern development by thermal waters with a possible bearing on ore deposition. Ph.D. dissertation, Stanford University, CaliforniaGoogle Scholar
  25. Egemeier SJ (1981) Cavern development by thermal waters. National Speleol Soc Bull 43(2):31–51Google Scholar
  26. Egemeier SJ (1987) A theory for the origin of Carlsbad Caverns. National Speleol Soc Bull 49(2):73–76Google Scholar
  27. Finney B, Jacobs M (2010) Carbon dioxide pressure-temperature phase diagram, Wikimedia CommonsGoogle Scholar
  28. Gregory KM, Chase CG (1992) Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado. Geology 20:81–85CrossRefGoogle Scholar
  29. Harris PM, Grover GA (1989) Subsurface and outcrop examination of the Capitan Shelf Margin, Northern Delaware Basin, San Antonio, TX, Society of Economic Paleontologists and Mineralogists core workshop vol 13, p 481Google Scholar
  30. Harris AG, Tuttle E, Tuttle SD (eds) (1997) Geology of national parks, 5th edn. Kendall/Hunt Publishing Company, Dubuque 758 pGoogle Scholar
  31. Hayes PT (1964) Geology of the Guadalupe Mountains, New Mexico. US Geological Survey Professional vol 446, p 69Google Scholar
  32. Heinrich JJ, Herzog HJ, Reiner D M (2003) Environmental assessment of geologic storage of CO2. In: Second national conference on carbon sequestration, Washington, Massachusetts Institute of TechnologyGoogle Scholar
  33. Hill CA (1981) Speleogenesis of Carlsbad Caverns and other caves of the Guadalupe Mountains. Proceedings of 8th International Congress of Speleology, Bowling Green, KY, pp 143–144Google Scholar
  34. Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mexico Bureau of mines and mineral resources, Socorro, NM. Bulletin 117:150Google Scholar
  35. Hill CA (1990) Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas. Am Assoc Pet Geol Bull 74(11):1685–1694Google Scholar
  36. Hill CA (1996) Geology of the Delaware Basin—Guadalupe, Apache, and Glass Mountains, New Mexico and Texas. Society of Economic Paleontologists and Mineralogists, Permian Basin Section, Publication, pp 96–39Google Scholar
  37. Hill CA (2000) Overview of the geologic history of cave development in the Guadalupe Mountains, New Mexico. National Speleol Soc Bull 62:60–71Google Scholar
  38. Hunt DW, Fitchen WM, Koša E (2002) Syndepositional deformation of the Permian Capitan reef carbonate platform, Guadalupe Mountains, New Mexico, USA. Sediment Geol 154:89–126Google Scholar
  39. Hurley NF (1989) Facies mosaic of the lower seven rivers formation, McKittrick Canyon, New Mexico. In: Harris PM, GA Grover (eds) Subsurface and outcrop examination of the Capitan Shelf Margin, northern Delaware Basin, vol 13. Society of Economic Paleontologists and Mineralogists, Core Workshop, pp 325–346Google Scholar
  40. Jagnow DH (1977) Geologic factors influencing speleogenesis in the Capitan Reef complex, New Mexico and Texas. M.S. Thesis, Albuquerque, University of New Mexico, p 197Google Scholar
  41. Jagnow DH (1979) Cavern development in the Guadalupe Mountains. Columbus, Ohio, Cave Research Foundation, p 55Google Scholar
  42. Jagnow DH (1989) The geology of Lechuguilla Cave, New Mexico. In: Harris PM, Grover GA (eds) Subsurface and outcrop examination of the Capitan shelf margin, northern Delaware Basin, vol 13. Society of Economic Paleontologists and Mineralogists Core Workshop, pp 459–466Google Scholar
  43. Kharaka Y, Cole D, Hovorka S, Gunter W, Knauss K, Freifeld B (2006) Gaswater-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7):577–580CrossRefGoogle Scholar
  44. King PB (1948) Geology of the southern Guadalupe Mountains, Texas. US Geological Survey Professional Paper, vol 215, p 183Google Scholar
  45. Kirkland DW (1982) Origin of gypsum deposits in Carlsbad Caverns, New Mexico. New Mex Geol 4:20–21Google Scholar
  46. Kirkland DW (2014) Role of hydrogen sulfide in the formation of cave and karst phenomena in the Guadalupe Mountains and western Delaware basin, New Mexico and Texas. NCKRI Special Pulication, vol 2, p 77Google Scholar
  47. Kirkland DW, Evans R (1976) Origin of limestone buttes, gypsum plain, Culberson County, Texas. Am Asso Petrol Geol Bull 60:2005–2018Google Scholar
  48. Koša E (2003) Heterogeneity in the structure, diagenesis and fill of syndepositional faults in carbonate strata. Upper Permian Capitan Platform, Guadalupe Mountains, New Mexico, USA, Ph.D. thesis, University of Manchester, EnglandGoogle Scholar
  49. Koša E, Hunt DW (2006) Heterogeneity in fill and properties of karst-modified syndepositional faults and fractures: upper Permian Capitan platform, New Mexico, USA. J Sediment Res 76:131–151CrossRefGoogle Scholar
  50. Lindsay RF (1998) Meteoric recharge, displacement of oil columns and the development of residual oil intervals in the Permian basin. In: DeMis WD, Nelis MK (eds) The search continues into the 21st century, vol 98–105. West Texas Geological Society Publication, pp 271–273Google Scholar
  51. Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Miner Deposita 36(6):490–502CrossRefGoogle Scholar
  52. Lundberg JL, Ford DC, Hill CA (2000) Preliminary U-Pb Date on Cave Spar, Big Canyon, Guadalupe Mountains, New Mexico, USA. J Cave Karst Stud 62(2):144–148Google Scholar
  53. Maltsev V (1997) Cupp-Coutunn Cave, Turkmenistan. In: Hill, Forti (eds) Cave minerals of the world. National Speleological Society, Huntsville, AlabamaGoogle Scholar
  54. Melim LA, Shinglman KM, Boston PJ, Northup DE, Spilde MN, Queen JM (2001) Evidence of microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J 18:311–330CrossRefGoogle Scholar
  55. Melim LA, Scholle PA (1989) Dolomitization model for the forereef facies of the Permian Capitan Formation, Guadalupe Mountains, Texas-New Mexico. In: Harris PM, Grover GA (eds) Subsurface and outcrop examination of the Capitan shelf margin, Northern Delaware Basin, Tulsa, OK, SEPM Core Workshop No. 13, pp 407–413Google Scholar
  56. Moore J, Adams M, Allis R, Lutz S, Rauzi S (2005) Mineralogical and geological consequences of the long-term presence of CO2 in natural reservoirs: an example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chem Geol 217:365–385CrossRefGoogle Scholar
  57. Mruk DH (1985) Cementation and dolomitization of the Capitan Limestone (Permian), McKittrick Canyon, West Texas. Unpublished MS thesis. University of Colorado, p 155Google Scholar
  58. Newell KJ, Fischer AG, Whiteman AJ, Hickox JE, Bradley JE (1953) The Permian reef complex of the Guadalupe Mountains region. Texas and New Mexico. W. H. Freeman and Co., San FranciscoGoogle Scholar
  59. Northup DE, Dahm CN, Melim LA, Spilde MN, Crossey LJ, Lavoie KH, Mallory LM, Boston PJ, Cunningham KI, Barns SM (2000) Evidence for geomicrobiological interactions in Guadalupe caves. J Cave Karst Stud 62(2):80–90Google Scholar
  60. Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, Crossey LJ, Connolly CA, Boston PJ, Natvig DO, Dahm CN (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5(11):1071–1086CrossRefGoogle Scholar
  61. Palmer AN (2007) Cave geology. Cave Books, Dayton Ohio, p 454Google Scholar
  62. Palmer AN, Palmer MV (2000) Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico. J Cave Karst Stud 62(2):91–108Google Scholar
  63. Palmer MV, Palmer AN (2012) Petrographic and isotopic evidence for late-stage processes in sulfuric acid caves of the Guadalupe Mountains, New Mexico, USA. Int J Speleol 41(2):231–250Google Scholar
  64. Polyak VJ, McIntosh WC, Güven N, Provencio P (1998) Age and origin of Carlsbad Cavern and related caves from 40Ar/39Ar of alunite. Science 279:1919–1922CrossRefGoogle Scholar
  65. Polyak VJ, Provencio P (2000) Summary of the timing of sulfuric-acid speleogenesis for Guadalupe Caves based on ages of alunite. J Cave Karst Stud 62(2):72–74Google Scholar
  66. Polyak VJ, Provencio PP (2001) By-product materials related to H2S-H2SO4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. J Cave Karst Stud 63:23–32Google Scholar
  67. Polyak VJ, Provencio PP, Asmerom Y (2016) U–Pb dating of speleogenetic dolomite: a new sulfuric acid speleogenesis chronometer. Int J Speleol 45(2):103–109CrossRefGoogle Scholar
  68. Pray LC, Esteban M (eds) (1977) Upper Guadalupian Facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas, vol 2—Road logs and locality guides (1977 Field Conference Guidebook). Midland, TX, Permian Basin Section-SEPM Publication, vol 77–16, p 194Google Scholar
  69. Queen JM (1973) Large-scale replacement of carbonate by gypsum in some New Mexico caves (abs.). National Speleological Society Convention, Bloomington, Indiana, Abstracts, p 12Google Scholar
  70. Queen JM (1981) Discussion and field guide to the geology of Carlsbad Cavern. In: Preliminary report to the national park service for the 7th international congress of speleology, p 64Google Scholar
  71. Queen JM (1994a) Influence of thermal atmospheric convection on the nature and distribution of microbiota in cave enevironments. In: Sasowsky ID, Palmer MV (eds) Breakthroughs in Karst Geomicrobiology and Redox Geochemistry, Special Pub 1. Karst Waters Institute, Charles Town, WV, pp 62–64Google Scholar
  72. Queen JM (1994b) Speleogenesis in the Guadalupes: the unsettled question of the role of mixing, phreatic or vadose sulfide oxidation. In: Sasowsky ID, Palmer MV (eds) Breakthroughs in Karst geomicrobiology and redox geochemistry, special pub 1. Karst Waters Institute, Charles Town, WV, pp 64–65Google Scholar
  73. Queen JM (1994c) A conceptual model for mixing zone diagenesis based on the hydrogeology of Bermuda. In: Sasowsky ID, Palmer MV (eds) Breakthroughs in Karst geomicrobiology and redox geochemistry, special pub 1. Charles Town, WV, Karst Waters Institute, pp 65–66Google Scholar
  74. Queen JM (2009a) Geologic setting, structure, tectonic history and paleokarst as factors in speleogenesis in the Guadalupe Mountains, New Mexico and Texas, USA. In: Proceedings of 15th international congress of speleology, Kerrville, Texas, pp 952–957Google Scholar
  75. Queen JM (2009b) Pre-drainage development of the caves of the Guadalupe Mountains, New Mexico and Texas, USA. In: Proceedings of 15th international congress of speleology, Kerrville, Texas, pp 958–963Google Scholar
  76. Queen JM (2009c) Post-drainage evolution of the caves of the Guadalupe Mountains, southeastern New Mexico and west Texas, USA. In: Proceedings of 15th international congress of speleology, Kerrville, Texas, pp 964–970Google Scholar
  77. Queen JM, Hose L (2006) Trail guide to, and discussion of, the geology of Carlsbad Cavern: Main Corridor and Big Room. In: Land L, Lueth VW, Raatz W, Boston P, Love DL (eds) Caves and karst of southeastern New Mexico. In: Socorro, New Mexico, New Mexico geological society 57th annual field conference, pp 151–160Google Scholar
  78. Queen JM, Melim LA (2006) Biothems: biologically influenced speleothems in caves of the Guadalupe Mountains, New Mexico, USA. In: Land L, Lueth VW, Raatz W, Boston P, Love DL (eds) Caves and karst of southeastern New Mexico. Socorro, New Mexico, New Mexico geological society 57th annual field conference, pp 167–174Google Scholar
  79. Sasowsky ID, Palmer MV (eds) (1994) Breakthroughs in karst geomicrobiology and redox geochemistry. Karst Waters Institute Special Publication, Charles Town, West Virginia 1Google Scholar
  80. Seager WR, Morgan P (1979) Rio grande Rift in southern New Mexico, west Texas and northern Chihuahua. In: Riecker RE (ed) Rio grande Rift: tectonics and magmatism. American Geophysical Union, pp 87–106Google Scholar
  81. Smith DB (1973) Geometry and correlation along Permian Capitan Escarpment, New Mexico and Texas: discussion. Am Asso Petrol Geol Bull 57:940–945Google Scholar
  82. Spilde MN, Boston PJ, Northup DE (2003) Subterranean soil development. J Cave Karst Stud 65(3):188Google Scholar
  83. Spilde MN, Northup DE, Boston PJ, Schelble RT, Dano KE, Crossey LJ, Dahn CN (2005) Geomicrobiology of cave ferromanganese deposits: a field and laboratory investigation. Geomicrobiol J 22:99–116. doi: 10.1080/01490450590945889 CrossRefGoogle Scholar
  84. Spilde MN, Kooser A, Boston PJ, Northup DE (2009) Speleosol: a subterranean soil. In: Proceedings of the 15th international congress of speleology, Kerrville, Texas, pp 338–344Google Scholar
  85. Spycher N, Pruess K, Ennis-King J (2003) CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochem et Cosmochim Acta 67(16):3015–3031CrossRefGoogle Scholar
  86. Thrailkill JV (1971) Carbonate deposition in Carlsbad Caverns. J Geol 79:683–695CrossRefGoogle Scholar
  87. Zimmerman JB (1962) Permian of the Central Guadalupe Mountains, Eddy County, New Mexico, West Texas, Roswell and Hobbs Geological Societies, p 115Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Harvey R. DuChene
    • 1
  • Arthur N. Palmer
    • 2
    Email author
  • Margaret V. Palmer
    • 2
  • J. Michael Queen
    • 3
  • Victor J. Polyak
    • 4
  • David D. Decker
    • 4
  • Carol A. Hill
    • 4
  • Michael Spilde
    • 4
  • Paul A. Burger
    • 5
  • Douglas W. Kirkland
    • 6
  • Penelope Boston
    • 7
  1. 1.Lake CityUSA
  2. 2.Department of Earth and Atmospheric SciencesState University of New YorkOneontaUSA
  3. 3.CarlsbadUSA
  4. 4.Department of Earth and Planetary SciencesUniversity of New MexicoAlbuquerqueUSA
  5. 5.National Park ServiceAnchorageUSA
  6. 6.CarrolltonUSA
  7. 7.NASA Astrobiology Institute, Ames Research Ctr., Moffett FieldMountain ViewUSA

Personalised recommendations