Advertisement

Hypogene Caves in France

  • Philippe AudraEmail author
Chapter
  • 1.1k Downloads
Part of the Cave and Karst Systems of the World book series (CAKASYWO)

Abstract

Hypogene speleogenesis (HS) describes cave development by rising fluids independent of recharge from the overlying or adjacent areas. Dissolution includes deep-seated acidic sources (CO2/H2S), “hydrothermal” cooling, mixing corrosion, and Sulfuric Acid Speleogenesis (SAS) at and above the water table. HS localizes in basin at sites of upward flows and convergences, in deformed strata at structural highs and major faults. In disrupted basins, geothermal gradient “pumps” downward meteoric water. Volcanism and magmatism produce “hyperkarst” combining CO2, H2S, thermalism, and microbial activity. Hypogene caves in France are presented according to a conceptual model. Isolated geodes are lined by calcite spar. 3D multistory caves (Pigette, Adaouste) show CO2 degassing morphologies (bubble trails, folia, tower cones, coral towers) and “hydrothermal” minerals (Fe–Mn oxi-hydroxides, barite, celadonite), with condensation–corrosion cupolas above the water Table. 2D maze caves develop below less permeable strata. Giant ascending shafts (Salins shaft), collapse shafts, and breccia pipes (called “organs” in the N.-French coal basin) correspond to “hyperkarst” phenomena. Caves with ore deposits are associated with sulfurs (Fe, Pb, Zn) or oxidized Fe. They often record past positions of base level and harbor unique features (black tubes, ghost-rock) or rare minerals. Along the water table, thermal gradient and CO2 /H2S degassing make condensation–corrosion and HS above the water table. Chevalley Aven shows upward dendritic pattern. Eventually, cupolas expand to large isolated chamber. Water table sulfuric caves develop headward with typical morphologies (corrosion tables, condensation domes, sulfuric karrens). Vapor shafts form by warm air convections and condensation–corrosion.

Keywords

Cave pattern Sulfuric Acid Speleogenesis (SAS) Condensation–corrosion Hypogene caves in France Speleogenesis 

Notes

Acknowledgements

For courtesy of illustrations we are grateful to the following persons: Stéphane Jaillet, Jean-Yves Bigot, Patrick Sorriaux, Laurent Bruxelles, Stéphanie Gallino-Josnin, P. Deconinck, and Fabien Hobléa.

References

  1. Audra P (2007) Karst et spéléogenèse épigènes, hypogènes, recherches appliquées et valorisation. Habilitation Thesis, University of Nice Sophia-AntipolisGoogle Scholar
  2. Audra P (2009) Une cavité à minéralisation hypogène dans le massif de la Pierre Saint-Martin: la grotte-mine d’Oilloki (Sainte-Engrâce, Pyrénées-Atlantiques). Recherches préliminaires (A mineralized hypogenic cave in Pierre Saint-Martin massif: the Oilloki Cave (Sainte-Engrâce, Pyrénées-Atlantiques). Preliminary investigations). In: International Congress, The karst, an efficient indicator of past and present environment, Arette 2007. Association française de karstologie, Karstologia Mémoires, vo 17, pp 176–182Google Scholar
  3. Audra P, Cailhol D (2014) Contexte géomorphologique des grottes de Soyons, Ardèche. 23e Rencontre d’Octobre, Le Châtelard 2013. Spéléo-club de ParisGoogle Scholar
  4. Audra P, Hobléa F (2007) The first occurrence of jurbanite [Al(OH SO4) 5H20], associated with alunogen [Al2 (SO4)3 17H20] and tschermigite [NH4Al(SO4)2 12H20]: thermal-sulfidic Serpents Cave, France. J Cave Karst Stud 69(2):243–249Google Scholar
  5. Audra P, Hofmann BA (2004) Les cavités hypogènes associées aux dépôts de sulfures métalliques (MVT). Le Grotte d’Italia 5:35–56Google Scholar
  6. Audra P, Palmer AN (2015) Research frontiers in speleogenesis. Dominant processes, hydrogeologic conditions and resulting cave pattern. Acta Carsologica 44(3):315–348. doi: 10.3986/ac.v44i3.1960 CrossRefGoogle Scholar
  7. Audra P, Bigot JY, Mocochain L (2002) Hypogenic caves in Provence (France). Specific features and sediments. Acta Carsologica 31:33–50Google Scholar
  8. Audra P, Hobléa F, Bigot JY, Nobécourt JC (2007) The role of condensation-corrosion in thermal speleogenesis. Study of a hypogenic sulfidic cave in Aix-les-Bains. Acta Carsologica 36:185–194Google Scholar
  9. Audra P, Mocochain L, Bigot JY, Nobécourt JC (2009a) The pattern of hypogenic caves. In: White WB (ed), Proceedings of 15th international congress of speleology, Kerrville Texas, vol 2, pp 795–800Google Scholar
  10. Audra P, Mocochain L, Bigot JY, Nobécourt JC (2009b) Hypogene cave patterns. In: Klimchouk AB, Ford DC (eds) Hypogene speleogenesis and karst hydrogeology of Artesian basins. Special Paper, Ukrainian Institute of Speleology and Karstology, Kiev, vol 1, pp 17–22Google Scholar
  11. Audra P, Mocochain L, Bigot JY, Nobecourt JC (2009c) The association between bubble trails and folia: a morphological and sedimentary indicator of hypogenic speleogenesis by degassing, example from Adaouste Cave (Provence, France). Int J Speleol 38(2):93–102CrossRefGoogle Scholar
  12. Audra P, Bigot JY, Nobécourt JC (2010) Hypogenic caves in France. Speleogenesis and morphology of the cave systems. Bulletin de la Société géologique de France 181(4):327–335Google Scholar
  13. Audra P, Bigot JY, Camus H, Gauchon C, Wienin M (2013) Hypogenic speleogenesis with ferruginous ore. The Piei mine-cave (Lagnes, Vaucluse, France). 2nd International-symposium on mine caves, Iglesias, Italy, Memorie dell’Istituto Italiano di Speleologia II(28):41–70Google Scholar
  14. Audra P, Gázquez F, Rull F, Bigot JY, Camus H (2015) Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record of uplift correlative cover retreat and valley dissection. Geomorphology 247:25–34. doi: 10.1016/j.geomorph.2015.03.031 CrossRefGoogle Scholar
  15. Auler AS, Smart PL (2003) The influence of bedrock-derived acidity in the development of surface and underground karst: evidence from the Precambrian carbonates of semi-arid northeastern Brazil. Earth Surf Proc Land 28(2):157–168CrossRefGoogle Scholar
  16. Bakalowicz M (1988) La formation des travertins: aspects géochimiques. Essai de synthèse et discussion. In: Vaudour J (ed) Les édifices travertineux et l’histoire de l’environnement dans le Midi de la France. Travaux de l’URA 903 XVII:261–268Google Scholar
  17. Bayari CS, Pekka E, Ozyurt NN (2009) Obruks, as giant collapse dolines caused by hypogene karstification in central Anatolia, Turkey: analysis of likely formation processes. Hydrogeol J 17:327–345CrossRefGoogle Scholar
  18. Bigot JY (2010) Le karst du gypse. In: Audra P (ed.) Grottes et karsts de France. Karstologia Mémoires, Association française de karstologie, vol 19, pp 86–87Google Scholar
  19. Bruxelles L (2001) Reconstitution morphologique du Causse du Larzac: Rôle des formations superficielles dans la morphogenèse karstique. Karstologia 38:25–40Google Scholar
  20. Bruxelles L, Wienin M (2009) Les fantômes de roche de la mine de la Grande Vernissière (Fressac, Gard). Premières observations sur l’origine de certains karsts de la bordure cévenole (The ghost rocks of the mine of La Grande Vernissière (Fressac, Gard). First observations about the origin of some karsts of the bordure cévenole). International congress, the karst, an efficient indicator of past and present environment, Arette, 2007. Karstologia Mémoires, Association française de karstologie 17:192–200Google Scholar
  21. Bruxelles L, Quinif Y, Wienin M (2009) How can ghost rocks help in karst development? In: 15th International congress of speleology, Kerrville, vol 2, pp 814–818. http://www.karstportal.org
  22. Calaforra JM, De Waele J (2011) New peculiar cave ceiling forms from Carlsbad Caverns (New Mexico, USA): the zenithal ceiling tube-holes. Geomorphology 134(1):43–48CrossRefGoogle Scholar
  23. Camus H, Bruxelles L (2013) Formes et couvertures karstiques des Avants-Causses du St-Affricain et du Causse du Guilhaumard. In: Étude hydrogéologique des Avants-Causses du St-Affricain et du Causse Guilhaumard, Rapport PROTEE PRO-R-2011-12, GEOTER GTR-PNR-1212-1016Google Scholar
  24. Caramanna G (2002) Exploring one of the world’s deepest sinkholes: The Pozzo del Merro (Italy). Underwater Speleology February: 4–8Google Scholar
  25. Cunningham KJ, Walker C (2009) Seismic-sag structures in Tertiary carbonate rocks beneath south-eastern Florida, USA: evidence for hypogene speleogenesis? In: Klimchouk AB, Ford DC (eds) Hypogene speleogenesis and karst hydrogeology of Artesian basins. Ukrainian Institute of Speleology and Karstology, Special Paper, Simferopol, Ukraine, vol 1, pp 151–158Google Scholar
  26. Dandurand G (2012) Cavités et remplissages de la nappe karstique de Charente (bassin de la Touvre, La Rochefoucauld). Spéléogenèse par fantômisation, archives pléistocène et holocène, rôle de l’effet de site. Karstologia 60:61–62Google Scholar
  27. De Waele J, Forti P, Naseddu A (2013) Speleogenesis of an exhumed hydrothermal sulphuric acid karst in Cambrian carbonates (Mount San Giovanni, Sardinia). Earth Surf Proc Land 38(12):1369–1379Google Scholar
  28. De Waele J, Audra P, Madonia G, Vattano M, Plan L, D’Angeli IM, Bigot JY, Nobécourt JC (2016) Sulphuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology 253:452–467CrossRefGoogle Scholar
  29. Dublyansky YV (2014) Hypogene speleogenesis—discussion of definitions. In: Klimchouk AB, Sasowsky I, Mylroie J, Engel SA, Engel AS (eds) Hypogene cave morphologies. Karst Waters Institute Special Publication, vol 18, Leesburg, Virginia, pp 1–3Google Scholar
  30. Dubois C, Quinif Y, Baele JM, Barriquand L, Bini A, Bruxelles L, Dandurand G, Havron C, Kaufmann O, Lans B, Maire R, Martin J, Rodet J, Rowberry MD, Tognini P, Vergari A (2014) The process of ghost-rock karstification and its role in the formation of cave systems. Earth-Sci Rev 131:116–148CrossRefGoogle Scholar
  31. Egemeier SJ (1981) Cavern development by thermal waters. NSS Bulletin 43(2):31–51Google Scholar
  32. Engel AS, Stern LA, Bennet PC (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32:369–372CrossRefGoogle Scholar
  33. Forti P, Sanna L (2010) The Naica project. A multidisciplinary study of the largest gypsum crystals of the world. Episodes 33(1):23–32. http://episodes.org/index.php/epi/article/viewFile/62140/48441. Accessed 19 July 2016
  34. Frumkin A, Fischhendler I (2005) Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions. Geomorphology 67(3–4):457–471CrossRefGoogle Scholar
  35. Galdenzi S, Maruoka T (2003) Gypsum deposits in the Frasassi caves, Central Italy. J Cave Karst Stud 65:111–125Google Scholar
  36. Galdenzi S, Menichetti M (1995) Occurrence of hypogene caves in a karst region: examples from central Italy. Environ Geol 26:39–47CrossRefGoogle Scholar
  37. Gallino S (2007) Hydrogéologie, géochimie et modélisation hydrodynamique-thermique d’un système thermo-minéral associé à un contact structural alpin (Aix-les-Bains, Savoie). Ph.D. thesis, University of SavoieGoogle Scholar
  38. Gary MO (2010) Karst hydrogeology and speleogenesis of Sistema Zacatón, Tamaulipas, Mexico. Ph.D. Thesis, University of Texas, Austin. AMCS Bulletin, Association for Mexican Cave Studies, Austin 21, pp 114Google Scholar
  39. Gary MO, Sharp JM (2009) Volcanogenic karstification: implications of this hypogene process. In: Stafford KW, Land L, Veni G (eds) Advances in hypogene karst studies, NCKRI Symposium, National Cave and Karst Research Institute, Carlsbad, NM 1:27–39Google Scholar
  40. Gàzquez F, Calaforra JM, Forti P, De Waele J, Sanna L (2015) The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain). Geomorphology 229:100–111CrossRefGoogle Scholar
  41. Geršl M, Geršlová E, Hypr D, Kolejka V (2011) Sub-crustal CO2 Flux Measurement in the Hranice Hy-drothermal Karst.- In: 21th Goldschmidt Conference “Earth evolution”, Prague, 2011. European Asso-ciation of Geochemistry, [Online] Available from: http://goldschmidt.info/2011/abstracts/G.pdf. Accessed 24 Apr 2015
  42. Guyonnet-Benaize C (2011) Modélisation numérique 3D haute résolution des structures géologiques de la Moyenne Durance, Provence, SE France (Multi-scale 3D modeling of geological structures of Middle Durance fault region SE France). Ph.D. thesis, Aix-Marseille UniversityGoogle Scholar
  43. Herron DA (1997) Origin and geologic history of the Timpanogos cave national monument Utah County. Thesis, Brigham Young University, Utah. MScGoogle Scholar
  44. Hill CA (1987) Geology of Carlsbad cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mex Bur Mines Min Resour 117:1–150Google Scholar
  45. Hobléa F (1999) Contribution à la connaissance et à la gestion environnementale des géosystèmes karstiques montagnards: études savoyardes. University of Lyon, ThesisGoogle Scholar
  46. Hobléa F, Gallino-Josnin S, Audra P (2010) Genesis and functioning of the Aix-les-Bains hydrothermal karst (Savoie, France): past research and recent advances. Bull de la Soc Géol de France 181:315–326CrossRefGoogle Scholar
  47. Hose LD, Pisarowicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud 61:13–21Google Scholar
  48. Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, Duchene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423CrossRefGoogle Scholar
  49. Jost A, Violette S, Macquar JC, Dromart G (2004) Rôle potentiel des paléo-circulations de fluides engendrés par l’orogenèse pyrénéenne dans la genèse des minéralisations plomb-zinc péri-cévenoles: essai de modélisation. Bull de la Soc géologique de France 175(4):317–329CrossRefGoogle Scholar
  50. Klimchouk AB (1992) Large gypsum caves in the Western Ukraine and their genesis. Cave Sci 19(1):3–11Google Scholar
  51. Klimchouk AB (2000a) Speleogenesis of great gypsum mazes in the Western Ukraine. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, AL, pp 261–273Google Scholar
  52. Klimchouk AB (2000b) Speleogenesis under deep-seated and confined settings. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, AL, pp 244–260Google Scholar
  53. Klimchouk AB (2007) Hypogene speleogenesis. Hydrogeological and morphogenetic perspective. NCKRI Special Paper Series, 1, National Cave and Karst Research Institute, Carlsbad, p 77Google Scholar
  54. Klimchouk AB (2013a) Hypogene speleogenesis. In: Shroder J. (ed. in chief), Frumkin A. (ed) Treatise on geomorphology, vol. 6 (Karst geomorphology). Academic Press, San Diego, pp 220–240Google Scholar
  55. Klimchouk AB (2013b) Hydrogeological approach to distinguishing hypogene speleogenesis settings. In: International symposium on hierarchical flow systems in karst regions, Budapest, Hungary, book of Abstracts, pp 94. http://www.karstflow2013.org/?nic=boo. Accessed 24 Apr 2015
  56. Klimchouk AB (2013c) Hypogene Speleogenesis, its hydrogeological significance and role in karst evolution (in Russian). Simferopol, 180 pp. http://www.institute.speleoukraine.net/uisk_pages/download.php?id=12680. Accessed 24 Apr 2015
  57. Klimchouk AB (2014) The methodological strength of the hydrogeological approach to distinguishing hypogene speleogenesis. In: Klimchouk A et al. (eds.) Hypogene cave morphologies. Karst Waters Institute, Leesburg, Virginia, pp 4–12Google Scholar
  58. Klimchouk AB (2015) The karst paradigm: changes, trends and perspectives. Acta Carsologica 44(3):289–313Google Scholar
  59. Klimchouk AB, Auler AS, Bezerra FHR, Cazarin CL, Balsamo F, Dublyansky Y (2016) Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil. Geomorphology 253:385–405. doi: 10.1016/j.geomorph.2015.11.00 CrossRefGoogle Scholar
  60. Lismonde B (2003) Limestone wall retreat in a ceiling cupola controlled by hydrothermal degassing with wall condensation. Speleogenesis Evolution Karst Aquifers 1(4):3. http://www.karstportal.org/FileStorage/Speleogenesis/seka_pdf4478.pdf. Accessed 25 July 2016
  61. Moret L (1950) Sources thermales alpines et grands travaux de barrages. Géologie alpine 28:79–96. http://geologie-alpine.ujf-grenoble.fr/articles/GA_1950_28_79_0.pdf. Accessed 25 July 2016
  62. Pagliara A, de Waele J, Forti P, Galli E, Rossi A (2010) Speleothems and speleogenesis of the hypogenic santa barbara cave system (south-west sardinia, italy). Acta Carsologica 3(552):39Google Scholar
  63. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  64. Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, AL, pp 77–90Google Scholar
  65. Palmer AN (2013) Sulfuric acid caves. In: Shroder J. (ed. in chief), Frumkin A (ed) Treatise on geomorphology, vol. 6 (Karst Geomorphology). Academic Press, San Diego, pp 241–257Google Scholar
  66. Palmer AN, Palmer MV (2000) Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico. J Cave Karst Stud 62:91–108Google Scholar
  67. Palmer AN, Palmer MV (2009) Caves and karst of the USA. National Speleological Society, Huntsville ALGoogle Scholar
  68. Palmer AN, Palmer MV, Paces JB (2015) Geologic history of the Black Hills caves, South Dakota. In: Feinberg J, Gao Y, Alexander EC Jr (eds) Caves and karst across time. Geological Society of America Special Paper 516:87–101. doi: 10.1130/2015.2516(07)
  69. Piccini L, De Waele J, Galli E, Polyak VJ, Bernasconi SM, Asmerom Y (2015) Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy). Geomorphology 229:134–143CrossRefGoogle Scholar
  70. Plan L, Pavuza R, Seemann R (2006) Der Nasse Schacht bei Mannersdorf am Leithagebirge, NÖ (2911/21) - eine thermal beeinflusste Höhle am Ostrand des Wiener Beckens. Die Höhle 57:30–46Google Scholar
  71. Plan L, Tschegg C, De Waele J, Spötl C (2012) Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology 169(170):45–54CrossRefGoogle Scholar
  72. Polyak VJ, McIntosh WC, Provencio P, Güven N (1998) Age and origin of Carlsbad Caverns and related caves from 40Ar/39Ar of alunite. Science 279:1919–1922CrossRefGoogle Scholar
  73. Quinif Y (1994) Le puits de Flenu: la plus grande structure endokarstique du monde (1200 m) et la problématique des puits du Houiller (Belgique). Karstologia 24:29–36Google Scholar
  74. Quinif Y (2010) Fantômes de roche et fantômisation. Essai sur un nouveau paradigme en karstogenèse. Karstologia Mémoires 18, pp 196Google Scholar
  75. Renault P (1970) La Formation des cavernes. Presses Universitaires de France, ParisGoogle Scholar
  76. Sarbu SM, Lascu C (1997) Condensation corrosion in Movile cave, Romania. J Cave Karst Stud 59(3):99–102Google Scholar
  77. Szunyogh G (1990) Theoretical investigation of the development of spheroidal niches of thermal water origin. Second approximation. In: Proceedings of the 10th international congress of speleology, Budapest 1989, Hungarian Speleological Society, Budapest. III: 766–768Google Scholar
  78. Thomas C (2010) Le karst du Yucatàn: rôle du flux géothermique, des failles, de l’eau de mer et des évaporites dans sa genèse. Karstologia 55:1–18Google Scholar
  79. Tisato N, Sauro F, Bernasconi SM, Bruijn R, De Waele J (2012) Hypogenic contribution to speleogenesis in a predominant epigenic karst system: a case study from the Venetian Alps, Italy. Geomorphology 151(152):156–163CrossRefGoogle Scholar
  80. Toro G. (1988) Les eaux thermales et minérales dans les Alpes de Haute-Provence (Sud-Est de la France); relations avec le cadre structural. Thesis, Univ. of MarseilleGoogle Scholar
  81. Tóth J (1970) A conceptual model of the ground water regime and the hydrogeologic environment. J Hydrol 10(2):164–176CrossRefGoogle Scholar
  82. Tóth J (2009) Gravitational system of groundwater flow: theory, evaluation. Cambridge University Press, UtilizationCrossRefGoogle Scholar
  83. Vergari A (1997) Contraintes paléokarstiques dans l’exploitation du calcaire carbonifère sur le bord nord du synclinorium de Namur en Hainaut occidental. Ph.D. thesis, Faculté polytechnique de MonsGoogle Scholar
  84. Vigna B, Fiorucci A, Banzato C, Forti P, De Waele J (2010) Hypogene gypsum karst and sinkhole formation at Moncalvo (Asti, Italy). Zeitschrift für Geomorphologie, Suppl. Issues 54(2):285–306Google Scholar
  85. Viseur S, Jouves J, Fournillon A, Arfib B, Guglielmi Y (2014) 3D stochastic simulation of caves: application to Saint-Sébastien case study (SE, France). Karstologia 64:17–24Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Nice Sophia AntipolisSophia Antipolis CedexFrance

Personalised recommendations