Advertisement

Hypogene Features in Sandstones: An Example from Carboniferous Basins of Central and Western Bohemia, Czech Republic

  • Václav SuchýEmail author
  • Ivana Sýkorová
  • Jiří Zachariáš
  • Jiří Filip
  • Vladimír Machovič
  • Ladislav Lapčák
Chapter
  • 1.1k Downloads
Part of the Cave and Karst Systems of the World book series (CAKASYWO)

Abstract

Concave and cavernous forms including rising wall channels, rising sets of coalesced copula, ceiling half-tube channels, separate ceiling copula, ceiling chimneys, and half-spherical upward-convex arches locally occur in surface outcrops of Carboniferous arkose sandstones in central and western Bohemia. Many of these negative forms conventionally described as tafoni and/or honeycombs have been traditionally interpreted as products of various exogenous weathering processes. Based on the line of indirect evidence, we propose an alternative interpretation in which these features represent transitional and outlet members of the morphologic suite of rising flow (MSRF), indicative of their subsurface hypogene origin. The negative forms are commonly associated with bedding planes and subvertical fractures mineralized with goethite and jarosite. The reflectance of coal particles embedded in sandstone along mineralized bedding planes (0.91–1.03% R r ) is appreciably higher with respect to those of adjacent unaltered arkose host rocks (0.61–0.85% R r ), pointing to the thermal overprint by hot fluids. Moreover, the walls of many cavities are covered by sandy-disintegrated alterite locally mineralized with gypsum, dickite, goethite, authigenic quartz, pickeringite, and bischofite. We suggest that these phenomena, including the origin of characteristic concave forms and mineralogical alterations of arkose host rocks, may have been due to warm, CO2-saturated and possibly H2S-rich brines that ascended from the deepest stratigraphic units of the Carboniferous succession via the network of subvertical tectonic fractures and migrated laterally outward along permeable bedding planes. As indicated by the apatite fission track analysis and wider geological observations, the alteration of arkose sandstones probably occurred at relatively shallow depth of burial, during the Tertiary uplift of the Bohemian Massif 15–20 Ma ago. In this environment, the alteration may have been accelerated by the effects of mixing corrosion where heated deep basinal fluids interacted with shallower interstratal waters. When the uplifted sandstone sequences eventually reached the surface, the hypogene cavities and altered cliff walls were subjected to subaerial weathering and fluvial erosion processes the effects of which were superimposed on older hypogene features.

Keywords

Speleogenesis Sandstone Vitrinite reflectance Fission tracks Diagenesis Weathering 

Notes

Acknowledgements

We wish to acknowledge the support provided by the Operational Program Prague—Competitiveness, project “Centre for Texture Analysis” (No. CZ.2.16/3.1.00/21538) and the program of a long-term conceptual development of the research organization RVO: 67985891. Our gratitude also goes to Dr Antonín Zeman (formerly the Institute of Theoretical and Applied Mechanics CAS) for his assistance with optical microscopic research. Ms Lenka Borecká (Institute of Rock Structure and Mechanics ASCR) has been helpful with the preparation of the diagrams. The paper has substantially benefited from constructive reviews and editorial effort of the editors Alexander Klimchouk and Jo De Waele.

References

  1. Audra P, Palmer AN (2015) Research frontiers in spelogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsol 44:315–348CrossRefGoogle Scholar
  2. Audra P, Gázquez F, Rull F, Bigot JY, Camus H (2016) Hypogenic sulfuric acid speleogenesis and rare sulfate minerals in Baume Galinière cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection. Geomorphology (in press)Google Scholar
  3. Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter. Applications and limitations, ACS symposium series, vol 570. American Chemical Society, Washington, DC, pp 216–229Google Scholar
  4. Brophy JG, Lahann RW, Rupp JA (2010) Selective feldspar dissolution in response to elevated CO2 pressure. AAPG search and discovery article #90116. AAPG eastern section meeting, Kalamazoo, Michigan, Sept 25–29 2010Google Scholar
  5. Bruthans J, Jenč P, Churáčková I, Schweigstillová J (2009) Vykroužené dutiny Českého ráje: jak a kdy vznikaly? [Rounded cavities in Bohemian Paradise: how and when they developed?] Speleofórum 28:101–105 (in Czech)Google Scholar
  6. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission track annealing kinetics I: experimental results. Am Miner 84:1213–1223CrossRefGoogle Scholar
  7. Čech S, Klein V, Kříž J, Valečka J (1980) Revision of the Upper Cretaceous Stratigraphy of the Bohemian Cretaceous Basin. Věstn Ústředního ústavu geologického 55(5):277–296Google Scholar
  8. Cílek V (1993) Solné výkvěty v pseudokrasových jeskyních výklencích na Dvořákově stezce u Nelahozevsi [Salt efflorescations in pseudokarst caves close to Nelahozeves, Prague region]. Speleo 11(18):12 (in Czech)Google Scholar
  9. De Waele J, Galdenzi S, Madonia G, Menichetti M, Parise M, Piccini L, Sanna ., Sauro F, Tognini P, Vattano M, Vigna B (2014) A review of Hypogene Caves in Italy. In: Klimchouk A, Sasowsky ID, Mylroie J, Engel SA, Engel AS (eds) Hypogene Cave morphologies, selected papers and abstracts of the symposium held February 2 through 7, 2014, San Salvador Island, Bahams. Karst Water Institute Special Publication 18, Karst Water Institute, Leesburg, Virginia, pp 28–30Google Scholar
  10. Desborough GA, Smith KS, Lowers HA, Swayze GA, Hammarstrom JM, Diehl SF, Leinz RW, Driscoll RL (2010) Mineralogical and chemical characteristics of some natural jarosite minerals. Geochim Cosmochim Acta 74:1041–1056CrossRefGoogle Scholar
  11. Donelick RA, Ketcham RA (1998) AFTSolve. Apatite fission track modelling software. Donelick analytical Inc., KatyGoogle Scholar
  12. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics II: crystallographic orientation effects. Am Miner 84:1224–1234CrossRefGoogle Scholar
  13. Dublyansky YV (1990) Zakonomernosti formirovania i modelirovania gidrotermokarsta [Principles of development and modelling of hydrothermal karstfication]. Trudy Instituta geologii i geofiziki imeni 60-letia Soyuza SSR 756, Nauka, Sibirskoe otdelenie, Novosibirsk (in Russian)Google Scholar
  14. Dublyansky YV (1995) Speleogenetic history of the Hungarian hydrothermal karst. Environ Geol 25:24–35CrossRefGoogle Scholar
  15. Dunkl I (2002) TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12CrossRefGoogle Scholar
  16. Fediuk F (1999) Geologický a vlastivědný výlet do levobřežního dolního Povltaví [Geological excursion to the lower left-bank area of the Vltava River]. Sprint Foto Servis, Liberec (in Czech)Google Scholar
  17. Filip J, Suchý V (2004) Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic: is there a fission-track evidence for Carboniferous-Permian overburden and pre-Westphalian alpinotype thrusting? Bull Geosci 79(2):107–112Google Scholar
  18. Frost RL, Wills RA, Weier ML, Martens W, Mills S (2006) A Raman spectroscopic study of selected natural jarosites. Spectrochim Acta A 63:1–8CrossRefGoogle Scholar
  19. Groom KM, Allen CD, Mol L, Hall K (2015) Defining tafoni: re-examining terminological ambiguity for cavernous rock decay phenomena. Prog Phys Geogr 39(6):775–793CrossRefGoogle Scholar
  20. Havlena V (1982) Limnické pánve permokarbonu Českého masivu—geneze, třídění, vyplňování a zlomová tektonika [Permo-Carboniferous limnic sedimentary basins of the Bohemian Massif: its origin, classification, depositional evolution and thrust tectonics]. In: Sborník IV. uhelně geologické konference Přírodovědecké fakulty Univerzity Karlovy, Univerzita Karlova, Praha, pp 37–44Google Scholar
  21. Holub V (1982) Explanatory notes to the lithotectonic profile of the Permo-Carboniferous basins of the Central Bohemian region (ČSSR). In: Tectonic regime of molasse epochs. Zentralinstitut für Physics der Erde, Potsdam, p 66Google Scholar
  22. Holub V, Eliáš M, Hrazdíra P, Franců J (1997) Geological research into gas sorbed in the coal seams of the Carboniferous in the Mšeno-Roudnice Basin, Czech Republic. In: Gayer R, Pešek J (eds) European coal geology and technology, vol 25, pp 409–423 (Geological Society special publication)Google Scholar
  23. Holub V, Jaroš J, Malý P, Martínek K, Pešek J, Prouza V, Spudil J, Tásler R (2001) Geologie a ložiska svrchnopaleozoických limnických pánví České republiky [Geology and deposits of upper palaeozoic limnic sedimentary basins of the Czech Republic].  Český geologický ústav, Praha (in Czech)Google Scholar
  24. Hurford AJ, Green PF (1982) A user’s guide to fission-track dating calibration. Earth Planet Sci Lett 59:343–354CrossRefGoogle Scholar
  25. Hurford AJ, Green PF (1983) The Zeta calibration of fission-track dating. Chem Geol 31:285–317CrossRefGoogle Scholar
  26. Jakucs L (1977) Genetic types of the Hungarian karst. Karszt és Barl Special Issue:3–18Google Scholar
  27. Jetel J (1970) Hydrogeologie permokarbonu a křídy na opěrném profile Mělník—Ještěd [Hydrogeology of the Permo-Carboniferous and Cretaceous in the profile line Mělník–Ještěd]. Sborník geologických věd, řada HIG 7:1–42 (in Czech, with English summary)Google Scholar
  28. Jetel J (1982) Hydrogeologie mšenské pánve a černouhelných ložisek mezi Mělníkem a Benátkami nad Jizerou [Hydrogeology of the black-coal deposits in the Mšeno Basin]. Sborník geologických věd, řada HIG 16:33–86 (in Czech, with English summary)Google Scholar
  29. Jetel J, Rybářová L (1985) Nové poznatky o hydrogeologii permokarbonu roudnické a mnichovohradišťské pánve [New data on hydrogeology of the Roudnice and Mšeno basins]. Zprávy o geologických výzkumech v roce 1985:80–82 (in Czech)Google Scholar
  30. Kaszuba J, Yardley B, Andreani M (2013) Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide–water–rock interactions. Rev Miner Geochem 77(1):153–188CrossRefGoogle Scholar
  31. Kempe S (2014) Hypogene limestone caves in Germany: geochemical background and regionality. In: Klimchouk A, Sasowsky ID, Mylroie J, Engel S, Engel AS (eds) Hypogene cave morphologies, vol 18, pp 48–56 (Karst Water Institute special publication)Google Scholar
  32. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics III: extrapolation to geological time scales. Am Miner 84:1235–1255CrossRefGoogle Scholar
  33. Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modelling of apatite fission-track data. Geol Mater Res 2:1–32CrossRefGoogle Scholar
  34. Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective (Special paper No. 1), 2nd edn. National Cave and Karst Research Institute, Carlsbad, pp 1–106Google Scholar
  35. Klimchouk A (2009) Morphogenesis of hypogenic caves. Geomorphology 106:100–117CrossRefGoogle Scholar
  36. Klimchouk A (2015) The Karst paradigm: changes, trends perspectives. Acta Carsol 44(3):289–313Google Scholar
  37. Klimchouk A, Tymokhina E, Amelichev G (2012) Speleogenetic effects of interaction between deeply derived fracture-conduit flow and intrastratal matrix flow in hypogene karst settings. Int J Speleol 41(2):161–179CrossRefGoogle Scholar
  38. Klimchouk AB, Amelichev GN, Tymokhina EI, Tokarev SV (2013a) Hypogenic speleogenesis in the Crimean fore-mountains (the Black sea region, south Ukraine) and its role in the regional geomorphology. In: Filippi M, Bosák P (eds) Proceedings of the 16th international congress of speleology, vol 3. Czech Speleological Society, Praha, pp 364–366 (Brno, July 2013)Google Scholar
  39. Klimchouk AB, Tymokhina EI, Amelichev GN, Dublyansky YV, Spötl C (2013b) The Hypogene Karst of the Crimean piedmont and its geomorphological role. DIP, Simferopol (in Russian)Google Scholar
  40. Krásný J, Čurda S, Datel JV, Dvořák J, Grmela A, Hrkal Z, Kříž H, Marszalek H, Šantrůček J, Šilar J (2012) Podzemní vody České republiky. Regionální hydrogeologie prostých a minerálních vod [Underground waters of the Czech Republic. Regional hydrogeology of surface and mineral waters]. Česká geologická služba, PrahaGoogle Scholar
  41. Kukal Z (1983) Granitoidové plutony byly hlavním zdrojem živců permokarbonských sedimentů [Granitoid plutons were the main source of feldspars of the Permo-Carboniferous sediments]. Čas mineral geol 28(4):423–428Google Scholar
  42. Lazaridis G, Melfos P, Papadopoulou L (2011) The first cave occurrence of orpiment (As2S3) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). Int J Speleol 40(2):133–139CrossRefGoogle Scholar
  43. Libertín M, Opluštil S, Pšenička J, Bek J, Sýkorová I, Dašková J (2009) Middle Pensylvanian pioneer plant assemblage buried in situ by volcanic ash-fall, central Bohemia, Czech Republic. Rev Palaeobot Palynol 155:204–233CrossRefGoogle Scholar
  44. Ling Z, Cao F, Ni Y, Wu Z, Zhang J, Li B (2016) Correlated analysis of chemical variations with spectroscopic features of the K–Na jarosite solid solutions relevant to Mars. Icarus 271:19–29CrossRefGoogle Scholar
  45. Littke R (1993) Deposition, diagenesis and weathering of organic matter-rich sediments. Lect Notes Earth Sci 47:1–216CrossRefGoogle Scholar
  46. Lojka R, Sýkorová I, Laurin J, Matysová P, Matys Grygar T (2010) Lacustrine couplet-lamination: evidence for late Pennsylvanian seasonality in central equatorial Pangaea (Stephanian B, Mšec Member, Central and Western Bohemian basins). Bull Geosci 85:709–734Google Scholar
  47. Lueth VW, Rye RO, Peters L (2016) “Sour gas” hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift. Chem Geol (in press)Google Scholar
  48. Malkovský M (1979) Tektogeneze platformího pokryvu Českého masívu [The tectogenesis of the platform cover of the Bohemian Massif]. Knih Ústředního ústavu geologického 53:1–179Google Scholar
  49. Malkovský M, Benešová Z, Čadek J, Holub V, Chaloupský J, Jetel J, Müller V, Mašín J, Tásler R (1974) Geologie české křídové pánve a jejího podloží [Geology of the Bohemian Cretaceous Basin and its basement]. Ústřední ústav geol Acad, Praha (in Czech)Google Scholar
  50. Marszalek M, Alexandrowicz Z, Rzepa G (2014) Composition of weathering crust on sandstones from natural outcrops and architectural elements in an urban environment. Environ Sci Pollut Res Int 21:14023–14036CrossRefGoogle Scholar
  51. Mísař Z, Dudek A, Havlena, Weiss J (1983) Geologie ČSSR I. Český masív [Geology of the ČSSR I. The Bohemian Massif]. Státní pedagogické nakladatelství, Praha (in Czech)Google Scholar
  52. Opluštil S (2005) Evolution of the Middle Westphalian river valley drainage system in central Bohemia (Czech Republic) and its palaeogeographic implication. Palaeogeogr Palaeoclimatol Palaeoecol 222:223–258CrossRefGoogle Scholar
  53. Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 77–90Google Scholar
  54. Pašek J, Urban M (1990) The tectonic evolution of the Plzeň basin (Upper Carboniferous, West Bohemia): a review and reinterpretation. Folia Musei Rerum Nat Bohem Occidentalis. Geologica 32:1–56Google Scholar
  55. Pešek J (1996) Geologie pánví středočeské svrchopaleozoické oblasti [Geology of central Bohemian Upper Paleozoic sedimentary basins]. Český geologický ústav, PrahaGoogle Scholar
  56. Pešek J, Sýkorová I (2006) A review of the timing of coalification in the light of coal seam erosion, clastic dykes and coal clasts. Int J Coal Geol 66:13–34CrossRefGoogle Scholar
  57. Plan L, Tschegg C, De Waele J, Spötl C (2012) Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology 169:45–54CrossRefGoogle Scholar
  58. Plózer I (1977) Situation of Hungarian cave diving in 1976. Karszt és Barlang, Special Issue, pp 67–69Google Scholar
  59. Polyak VJ, Asmerom Y, Hill C, Palmer AN, Provencio PP, Palmer MV, McIntosh WC, Decker DD, Onac BP (2014) Isotopic studies of byproducts of hypogene speleogenesis and their contribution to the geologic evolution of the western United States. In: Klimchouk A, Sasowsky ID, Mylroie J, Engel S, Engel AS (eds) Hypogene cave morphologies, vol 18. Karst Water Institute special publication, pp 88–96Google Scholar
  60. Puşcaş CM, Onac BP, Effenberger HS, Povară I (2013) Tamarugite-bearing paragenesis formed by suphate acid alteration in Diana cave, Romania. Eur J Miner 25(3):479–485Google Scholar
  61. Sauro F, De Waele J, Onac BP, Galli E, Dublyansky Y, Baldoni E, Sanna L (2014) Hypogenic speleogenesis in quartzite: the case of Corona´e Sa Craba Cave (SW Sardinia, Italy). Geomorphology 211:77–88CrossRefGoogle Scholar
  62. Surdam RC (1984) The chemistry of secondary porosity. In: McDonald DA, Surdam RC (eds) Clastic diagenesis. The American Association of Petroleum Geologists, Tulsa, pp 127–149Google Scholar
  63. Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic Petrology. Gebrüder Borntraeger, BerlinGoogle Scholar
  64. Temovski M, Audra P, Mihevc A, Spangenberg JE, Polyak V, McIntosh W, Bigot JY (2013) Hypogenic origin of Provalata cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis. Int J Speleol 42:235–246CrossRefGoogle Scholar
  65. Vítek J (1987) Pseudokrasové tvary v karbonských sedimentech severozápadně od Plzně [Pseudokarst features in Carboniferous sediments NW of Pilsen]. Československý kras 38:125–127 (in Czech)Google Scholar
  66. Wagner GA, Van den Haute P (1992) Fission-track dating. Ferdinand Encke Verlag, StuttgartCrossRefGoogle Scholar
  67. Zachariáš J, Pešek J (2011) Fluid inclusion study of carbonate-dominated veinlets from coal seams and rocks of the central and west Bohemian basins, Czech Republic. Acta Geodynamica et Geomater 8(2):133–143Google Scholar
  68. Zeman A, Suchy V, Stejskal M, Janku J, Cermak J, Turek K (2000) Migration of fluids controlled by equidistant fracture systems: an example from Central Europe (Czech Republic, Slovakia and Austria). J Geochem Explor 69(70):499–504CrossRefGoogle Scholar
  69. Ziegler PA (1990) Geological atlas of western and central Europe. Shell, The HagueGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Václav Suchý
    • 1
    Email author
  • Ivana Sýkorová
    • 2
  • Jiří Zachariáš
    • 3
  • Jiří Filip
    • 4
  • Vladimír Machovič
    • 5
    • 2
  • Ladislav Lapčák
    • 5
  1. 1.Praha 6Czech Republic
  2. 2.Institute of Rock Structure and Mechanics v. v. i., Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  3. 3.Faculty of ScienceCharles UniversityPraha 2Czech Republic
  4. 4.Institute of Geology of the CAS v. v. i., Academy of Sciences of the Czech RepublicPraha 6-LysolajeCzech Republic
  5. 5.University of Chemistry and Technology PraguePrague 6Czech Republic

Personalised recommendations