Caves of the Buda Thermal Karst

  • Szabolcs Leél-ŐssyEmail author
Part of the Cave and Karst Systems of the World book series (CAKASYWO)


The Buda thermal karst is one of the most characteristic hypogene karst systems of the world developed in Triassic and Eocene limestone and marl in Budapest, on the right side of the Danube, under 300–400 m high hills. Due to the mixing corrosion enhanced by CO2 and perhaps sulfuric acid, the water circulation formed multi-storey cave systems with different morphologies and complicated layout along the tectonic fissures. The arrangement of caves is independent of surface topography. The world-famous medicinal waters of Budapest come to the surface through cave passages. Due to the incision of the Danube and the uplift of the area in the Pleistocene, most passages are presently dry; now they lie 100 m above the Danube, though there are still passages below the water-table. The length of the five largest known caves and about 100 smaller ones reaches 55 km, and it is reasonable to estimate the length of unknown underground passages to be comparable. Caves are characterized by complex morphology, suggesting the formation by rising flow, and by rich carbonate-sulfuric mineral precipitations. Some of them (e.g. barite and calcite veins) are associated with bedrock formation and thus predate the cave forming process. There are minerals that precipitated from the warm water that dissolved the cave (Fe- and Mn-containing minerals formed by bacterial colonies, or cave rafts and folia). Evaporitic precipitations (e.g. popcorns, and frostworks) are remarkable. There are frequent precipitations of gypsum (chandeliers, gypsum flowers, etc.) due to the pyrite content of the marl above the passages. Discovering the concealed and hidden caves since the early twentieth-century was helped by quarries and earthworks followed by systematic and deliberate exploration.


Budapest Tectonic preformation Mixing corrosion: solution forms Carbonate-sulfate minerals 



Many thanks to Prof. Stein-Erik Lauritzen for his advice and for the opportunity to work in his U-series laboratory; to Magdolna Virág and to Tamás Garamhegyi geologists (presently Ph.D. students) for compiling my figures; and to Gábor Gercsák for his assistance in writing my chapter in English.


  1. Adamkó P, Leél-Őssy Sz (1986) Budapest új csodája: a József-hegyi-barlang (New wonder of Budapest: the József-hegyi Cave). Karszt és Barl 1984:1–8 (in Hungarian with English abstract)Google Scholar
  2. Adamkó P, Dénes Gy, Leél-Őssy Sz (1992) Caves of Buda, Issue of the council of BudapestGoogle Scholar
  3. Albert G, Virág M, Erőss A (2015) Karst porosity estimations from archive cave surveys—studies in the Buda Thermal Karst System (Hungary). Int J Speleol 44(2):151–165. doi: 10.5038/1827-806X.44.2.5 CrossRefGoogle Scholar
  4. Alföldi L (1981) A budapesti geotermikus áramlási rendszer modellje (the model of geothermal flow system of Budapest). Hidrológiai Közlöny 1981(9):397–403Google Scholar
  5. Anda D, Büki G, Krett G, Makk J, Márialigeti K, Erőss A, Mádl-Szőnyi J, Borsodi A (2014) Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary). Acta Microbiol Immunol Hung 61(3):329–346. doi: 10.1556/AMicr.61.2014.3.7 CrossRefGoogle Scholar
  6. Anda D, Makk J, Krett G, Jurecska L, Márialigeti K, Mádl-Szőnyi J, Borsodi A (2015) Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary). Extremophiles 19:787–797. doi: 10.1007/s00792-015-0754-1 CrossRefGoogle Scholar
  7. Audra P, Mocochain L, Bigot JY, Nobécourt JC (2009) The association between bubble trails and folia: a morphological and sedimentary indicator of hypogenic speleogenesis by degassing, example from Adaouste Cave (Provence, France). Int J Speleol 38(2):93–102CrossRefGoogle Scholar
  8. Audra P, Gázquez F, Rull F, Bigot J, Camus H (2015) Hypogene sulfuric acid speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection. Geomorphology 247:25–34CrossRefGoogle Scholar
  9. Bakalowicz MJ, Ford DC, Miller TE, Palmer AN (1987) Thermal genesis of solution caves in the Black Hills, South Dakota. Bull Geol Soc Am 99:729–738CrossRefGoogle Scholar
  10. Báldi T (1986) Mid-tertiary stratigraphy and paleographic evolution of Hungary. Akadémiai Kiadó, BudapestGoogle Scholar
  11. Bodor P (2014) A rózsadombi megcsapolódási terület felszín alatti vizeiben bekövetkező időbeli változások vizsgálata (assessment of the temporal changes in groundwater in the discharge area of Rózsadomb). Manuscript, MSc Thesis, ELTE TTK Department of Physical and Applied Geology, BudapestGoogle Scholar
  12. Bodor P, Erőss A, Mádl-Szőnyi J, Czuppon G (2014) A Duna és a felszín alatti vizek kapcsolata a rózsadombi megcsapolódási területen (the connection between the Danube and the groundwater system in the discharge area of Rózsadomb). Karsztfejlődés XIX:63–75Google Scholar
  13. Borsodi A, Knáb M, Krett G, Makk J, Márialigeti K, Erőss A, Mádl-Szőnyi J (2012) Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary. Geomicrobiol J 29(7):611–627CrossRefGoogle Scholar
  14. Bögli A (1963) Beitrag zur Enstehung von Karsthöhlen. Die Höhle 63–68Google Scholar
  15. Bögli A (1965) The role of corrosion by mixed water in cave forming. In: Stekl O (ed) Problems of the speleological research, Czechoslovakia. Academy of Science, Prague, pp 125–131Google Scholar
  16. Caddeo GA, Railsback LB, De Waele J, Frau F (2015) Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: the interplay of substrate, water supply, degassing, and evaporation. Sed Geol 318:130–141CrossRefGoogle Scholar
  17. D’Angeli IM, De Waele J, Melendres O, Tisato N, Sauro F, Gonzales ERG, Bontognali TR (2015) Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba). Geomorphology 228:526–535CrossRefGoogle Scholar
  18. Davis DG (1996) Extraordinary features of Lechuguilla Cave. Natl. Speleo. Soc, Conv. Progr. Salida, Aug. 5–9, pp 48–49Google Scholar
  19. Davis DG (2012) In defense of a fluctuating-interface, particle-accretion origin of folia. Int J Speleol 41(2):189–198CrossRefGoogle Scholar
  20. Dublyansky YV (1992) A Budai-hegység hidrotermás paleokarsztja—a folyadékzárvány vizsgálatok első eredményei (the hydrothermal paleokarst of Buda Mountains—the first results of the examinations of fluid inclusions). Karszt és Barlang 1991(1–2):19–24Google Scholar
  21. Dublyansky YV (1995) Speleogenetic history of the Hungarian hydrothermal karst. Environ Geol 25:24–35CrossRefGoogle Scholar
  22. Dublyansky JV (2000) Hydrothermal speleogenesis in the Hungarian Karst. In: Klimchouk A, Ford DC, Palmer AN, Dreybodt W (eds) Speleogenesis. Evolution of karst aquifers. National Speleological Society, Huntsville, Alabama, USA, pp 298–303Google Scholar
  23. Ehrlich HL (ed) (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  24. Erőss A (2010) Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda Thermal Karst, Hungary. PhD Dissertation, Eötvös L. University, BudapestGoogle Scholar
  25. Erőss A, Mádl-Szőnyi J, Csoma AÉ (2008) Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. Cent Eur Geol 51(3):267–281CrossRefGoogle Scholar
  26. Erőss A, Mádl-Szőnyi J, Csoma AÉ (2010) The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, Buda Thermal Karst. Hungary, EMR Final Report SIEP RijswijkGoogle Scholar
  27. Erőss A, Mádl-Szőnyi J, Borsodi A, Knáb M, Csoma ÉA, Mindszenty A (2011) Results of in situ dissolution experiment to understand hypogenic karstification processes, Buda Thermal Karst, Hungary. In: Bertrand C, Carry N, Mudry J, Pronk M, Zwahlen F (eds) Proc. H2Karst, 9th conference on limestone hydrogeology, Besançon (France), pp 161–164Google Scholar
  28. Erőss A, Mádl-Szőnyi J, Surbeck H, Horváth Á, Goldscheider N, Csoma AÉ (2012) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137CrossRefGoogle Scholar
  29. Esteban M, Budai T, Juhász E, Lapointe O (2009) Alteration of Triassic carbonates in the Buda Mountains—a hydrothermal model. Cent Eur Geol 52(1):1–29CrossRefGoogle Scholar
  30. Fairchild IJ, Baker A (2012) Speleothem science. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  31. Fodor L, Leél-Őssy Sz, Tari G (1991) En-echelon fractures in a dextral shear zone—tectonic heritage for a hydrothermal cave (Budapest, Hungary). Terra Nova 4:165–170Google Scholar
  32. Ford DC (1995) Some thoughts on hydrothermal caves. Cave Karst Sci 22(3):107–118Google Scholar
  33. Ford DC, Williams PW (2007) Karst geomorphology and hydrology. Wiley, ChichesterCrossRefGoogle Scholar
  34. Ford DC, Takács-Bolner K (1992) Abszolút kormeghatározás és stabil izotóp vizsgálatok budai barlangi kalcitmintákon (absolute age determination and stable isotope measurements on cave-calcite samples of Buda Mountains). Karszt és Barl 1991(I–II):11–18Google Scholar
  35. Gadó P (1965) A Szemlő-hegyi-barlangban talált kristályszálról készült röntgenvizsgálat eredménye (The result of X-ray examination of crystal needle from Szemlő-hegy Cave). Karszt és Barl 1965(I):19–20Google Scholar
  36. Gádoros M, Cser F (1986) Aerosol in caves. Critical considerations in proceedings of the 9th international congress of speleology, Barcelona I:90–92Google Scholar
  37. Gamond (1987) Bridge structures as sense of displacement criteria in brittle fault zones. J Struct Geol 9:609–620Google Scholar
  38. Gatter I (1984) A karbonátos kőzetek érkitöltéseinek és a barlangok hévizes kiválásainak folyadékzárvány-vizsgálata (the fluid inclusion measurement of vein-fillings of calcareous rocks and on hydrothermal precipitations of the caves). Karszt és Barl 1980(II):9–18Google Scholar
  39. Gázquez F, Calaforra JM (2013) Origin of double-tower raft cones in hypogenic caves. Earth Surf Proc Land 38(14):1655–1661CrossRefGoogle Scholar
  40. Győri O, Poros Z, Mindszenty A, Molnár F, Fodor L, Szabó R (2011) Budai-hegységi paleogén karbonátos kőzetek diagenezistörténete (diagenetic history of the Paleogene carbonates, Buda Hills, Hungary). Földtani Közlöny 141(4):341–361 (in Hungarian with English abstract)Google Scholar
  41. Haas J (2004) Triász (Triassic). ELTE, Eötvös KiadóGoogle Scholar
  42. Hill CA (1987) Geology of Carlsbad cavern and other caves in the Guadalupe Mountains. New Mexico and Texas, New Mexico Bureau of Mines and Mineral Resources, Bulletin, p 117Google Scholar
  43. Hill CA (1990) Sulfuric acid speleogenesis of Carlsbad Cavern. Am Ass Petrol Geol Bull 74(1):1685–1694Google Scholar
  44. Hill CA (1995) Sulfur redox reactions, native sulfur, Mississippi Valley-type deposits and sulfuric acid karst. Environ Geol 25:16–23CrossRefGoogle Scholar
  45. Hill CA, Forti P (1997) Cave minerals of the World. National Speleological Society, HuntsvilleGoogle Scholar
  46. Horányi G, Leél-Őssy Sz (1980) A hegyitej ásványtani vizsgálata magyarországi előfordulásokon (Mineralogical examination of Hungarian Moonmilch). Manuscript, ELTE, Department of Physical and Historical GeologyGoogle Scholar
  47. Jakucs L (1994) A Budai-hegység hidrotermális karsztja (the hydrothermal karst of Buda Mountains). Földrajzi Értesítő 43(3–4):235–246Google Scholar
  48. Jaskó S (1948) A Mátyás-hegyi-barlang (the Mátyás-hegy Cave). MÁFI Évi Jelentés 10:133–147Google Scholar
  49. Kele S, Scheuer G, Demény A, Shen CC, Chiang HW (2009) U-series dating and isotope geochemical study of the Gellért Hill (Budapest) travertine. Cent Eur Geol 52:199–224CrossRefGoogle Scholar
  50. Kele S, Scheuer G, Demény A, Shen C-C, Chiang HW (2011) A Rózsadomb (Budapest) édesvízi mészköveinek U/Th sorozatos kormeghatározása és stabilizotóp-geokémiai vizsgálata (Uranium-series dating and geochemical analysis of the travertines located on the Rózsadomb, Budapest). Földtani Közlöny 141:293–312 (in Hungarian with English abstract)Google Scholar
  51. Kiss A, Takács-Bolner K (1987) Újabb jelentős feltárások a Pál-völgyi-barlangban (new important discoveries in Pál-vögyi Cave) Karszt és Barl 38Google Scholar
  52. Klimchouk A (2007) Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. Special Paper No. 1, National Cave and Karst Research Institute, CarlsbadGoogle Scholar
  53. Klimchouk AB, Ford DC, Palmer A, Dreybodt W (2000) Speleogenesis. Evolution of Karst aquifers. National Speleological Society, HuntsvilleGoogle Scholar
  54. Klimchouk A, Auler AS, Bezerra FHR, Cazarin CI, Balsamo F, Dublyansky Y (2016) Hypogenics origin, geologic controls and functional organization of a giant cave system in Precambrian carbonate, Brazil. Geomorphology 253:385–405CrossRefGoogle Scholar
  55. Kovács J, Müller P (1980) A Budai-hegyek hévizes tevékenységének kialakulása és nyomai (Evolution and traces of hydrothermal activity in the Buda Mountains). Karszt és Barlang 1980(II):93–98Google Scholar
  56. Kraus S (1991) A budai barlangok hévizes karbonátkiválásai (Carbonate precipitations of thermal water origin of Buda). Karszt és Barlang 1990(2):91–97Google Scholar
  57. Kraus S (1993) A Szemlő-hegyi-barlang vízszintváltozásai (Water level changing of Szemlő-hegy Cave). Karszt és Barlang 1993(I–II):47–53Google Scholar
  58. Kraus S (2010) Borsókövek és cseppkövek váltakozása (Alternating of botryoids and dripstones). Karszt és Barlang 2009(I–II):41–42Google Scholar
  59. Krolopp E, Schweitzer F, Scheuer G, Dénes G, Kordos L, Skoflek I, Jánossy D (1976) A budai Várhegy negyedkori képződményei (quaternary forms of Várhegy in Buda). Földtani Közlöny 106:193–228Google Scholar
  60. Laptyev FF (1939) Agresszivnoje dejstvije vody na karbonatnyje porody, gipsy i betony. Moscow–Leningrad (in Russian)Google Scholar
  61. Leél-Őssy Cs, Leél-Őssy Sz, Adamkó P (2007) A Citadella-kristálybarlang (The Citadella Crystal Cave). Karszt és Barlang 2007(I–II): 67–78Google Scholar
  62. Leél-Őssy S (1957) A Budai-hegység barlangjai (The caves of Buda Mountains). Földrajzi Értesítő VI(2):155–169Google Scholar
  63. Leél-Őssy Sz (1995) A budai Rózsadomb és környékének különleges barlangjai (Special caves of Rózsadomb on Buda and its environs). Földtani Közlöny 125(3–4):363–432 (in Hungarian with English abstract)Google Scholar
  64. Leél-Őssy Sz (1997) A József-hegyi-barlang (Budapest) termálkarsztos keletkezése és fejlődése (Thermal karstic genesis and development of József-hegy Cave, Budapest). PhD thesis, Hungarian Academy of SciencesGoogle Scholar
  65. Leél-Őssy Sz (2014) Kristálybarlang a nagyváros alatt. A budapesti József-hegyi-barlang (Crystal cave under the big city. The József-hegy Cave in Budapest). GeoLitera, SZTE TTIK Geographical and Geological Dept, SzegedGoogle Scholar
  66. Leél-Őssy Sz (2015) Caves in the Buda Mountains. In: Lóczy D (ed) Landscapes and landforms of Hungary. Springer, Heidelberg, pp 121–128Google Scholar
  67. Leél-Őssy Sz, Surányi G (2003) The peculiar hydrothermal caves in Budapest (Hungary). Acta Geol Hung 46(4):407–436Google Scholar
  68. Leél-Őssy Sz, Szanyi G, Surányi G (2011) Minerals and speleothems of the József-hegy Cave (Budapest, Hungary). International Journal of Speleology 40(2):191–203Google Scholar
  69. Mádl-Szőnyi J, Pulay E, Tóth Á, Bodor P (2015) Regional underpressure: a factor of uncertainty in the geothermal exploration of deep carbonates, Gödöllő Region. Hung Environ Earth Sci 74(12):7523–7538. doi: 10.1007/s12665-015-4608-z CrossRefGoogle Scholar
  70. Mádl-Szőnyi J, Tóth Á (2015) Basin-scale conceptual groundwater flow model for an unconfined thick carbonate region. Hydrogeol J 23(7):1359–1380. doi: 10.1007/s10040-015-1274-x CrossRefGoogle Scholar
  71. Mindszenty A, Mádl-Szőnyi J, Pethő SL, Kovács J, Müller I, Fodor L, Kádár M, Angelus B, Erőss A, Nyúl K, Poyanmehr Z, Varga R (2000) A Rózsadombi termálkarszt monitoring optimalizálása. Zárójelentés a 2000. évben végzett munkáról (Optimizing of rózsadomb thermal karst monitoring. Final report of the work in 2000) manuscript. ELTE Department of Applied and Environmental Geology, p 111Google Scholar
  72. Molnár F, Gatter I (1994) Magyarországi üledékes és hidrotermás baritkristályok összehasonlító ásványtani-genetikai vizsgálata (comparative mineralogical-genetical examinations of Hungarian sedimentological and hydrothermal barite crystals). Földtani Közlöny 124(1):43–57Google Scholar
  73. Müller P (1989) Hydrothermal paleokarst of Hungary. In: Bosák P, Ford DC, Glazek J, Horácek J (eds) Paleokarst—a systematic and regional Review. Academia, Praha, Elsevier, Amsterdam, pp 155–163CrossRefGoogle Scholar
  74. Müller P, Sárváry I (1977) Some aspects of development in Hungarian speleology theories during the last 10 years. Karszt és Barlang (Special Issue):53–59Google Scholar
  75. Nádor A (1991) A Budai-hegység paleokarszt jelenségei és fejlődéstörténetük (The paleokarst phenomenas and its evolutionary on Buda Hills). PhD Dissertation, ELTE Department of Physical and Historical GeologyGoogle Scholar
  76. Nádor A (1992) Mineralogy and stable isotope geochemistry of spelean carbonates from hydrothermal caves. Proc Conf Karst Cave Res, Jósvafő 1991:23–29Google Scholar
  77. Nagy S (2008) A Budai-hegység hidrotermás folyamatainak szerepe a Bátori-barlang és a Ferenc-hegyi-barlang kialakulásában (The role of the hydrothermal activity in the genesis of Bátori Cave and Ferenc-hegy Cave in Buda Hills). Manuscript, MSc Thesis, ELTE TTK, Department of MineralogyGoogle Scholar
  78. Palmer AN (2007) Cave geology. Cave books, DaytonGoogle Scholar
  79. Palmer AN, Palmer M, Davis D (1991) Geology and origin of Lechuguilla Cave. In: Widmer U (ed) Lechuguilla jewel of the underground. Speleoprojects, BaselGoogle Scholar
  80. Pávai-Vajna F (1930) A forró oldatok, gőzök és gázok szerepe a barlangképződésnél (the role of the hot solutions and vapours and gases in the speleogenesis). Hidrológiai Közlöny 10:115–122Google Scholar
  81. Pethő S (1996) A budapesti József-hegyi-barlang egyes képződményeinek vizsgálata, különös tekintettel a borsókövekre (examination of formations of József-hegyi cave in Budapest, considering of botryoids) Manuscript ELTE TTK, Department of Physical and Historical GeologyGoogle Scholar
  82. Piccini L (2000) Il carsismo di origine idrotermale del Colle di Monsummano (Pistoia–Toscana)[The hydrothermal-origin karst from the Monsummano Hills (Pistoia–Tuscany]. Le Grotte d’Italia 1:33–43Google Scholar
  83. Plummer LN (1975) Mixing of seawater with calcium carbonate groundwater. Geol Soc Am Memoirs 142:219–236Google Scholar
  84. Poros Z, Mindszenty A, Molnár F, Pironon J, Győri O, Ronchi P, Szekeres Z (2012) Imprints of hydrocarbon-bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary. Int J Earth Sci (Geol. Rundsch.) 101:429–452Google Scholar
  85. Réthly A (1952) A Kárpát-medence földrengései 455–1918 (the earthquake of Carpathian Basin 455–1918). Akadémiai Kiadó, BudapestGoogle Scholar
  86. Runnels DD (1969) Diagenesis, chemical sediments and the mixing of natural waters. Jour of Sed Petr 39:1188–1201Google Scholar
  87. Sásdi L (1993) A Budai-hegység paleokarsztjai és fejlődéstörténetük. II. Termális hatást tükröző paleokarsztok (The palaeokarsts of Buda Mountains and their developing. II. The thermal effect reflecting palaeokarsts). Karszt és Barlang 1993(I–II):39–46Google Scholar
  88. Schafarzik F (1921) Visszapillantás a budai hévforrások fejlődéstörténetére (Back-glance for developing of Buda thermal springs) Hidrológiai Közlöny I914Google Scholar
  89. Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703CrossRefGoogle Scholar
  90. Szabó V, Fórizs I, Hałas S, Pelc A, Deák J (2009) A budapesti hévizek szulfátjának eredete stabilizotópos mérések alapján (the origin of sulphate-content of thermal water of Budapest, based on stable isotope measurings). A Miskolci Egyetem Közleményei, A sorozat, Bányászat 77:73–81Google Scholar
  91. Szanyi G, Surányi G, Leél-Őssy Sz (2012) Cave development and Quaternary uplift history in the Central Pannonian Basin derived from speleothem ages. Quat Geochronol 14:18–25Google Scholar
  92. Takács-Bolner K (1989) Regional and special genetic marks of the Pál-völgy Cave, the largest cave of thermal water origin in Hungary. Proceedings of the 10th International Congress of Speleology, Budapest, III, pp 819–822Google Scholar
  93. Takács-Bolner K (1993) Ritka karbonátkiválás típusok (rare carbonate precipitation types). Karszt és Barlang 1993(1–2):29–38Google Scholar
  94. Takács-Bolner K, Kraus S (1989) The results of research into caves of thermal water origin. Karszt és Barlang (Special Issue):31–38Google Scholar
  95. Takács-Bolner K, Kiss A (2004) Pál-völgyi-barlang—egy felfedezés 100 éve (The Pál-völgy Cave—100 years of a discovery). Danube-Ipoly National Park, BudapestGoogle Scholar
  96. Tcalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81(6):1625–1640CrossRefGoogle Scholar
  97. Telegdi-Roth K (1914) A Magyar Középhegység északi részének felső oligocén rétegeiről, különös tekintettel az egervidéki felső oligocénre (about the upper Oligocene layers of the northern part of Hungarian Middle-mountains, considering of upper Oligocene of Eger). Koch Emlékkönyv, pp 111–126Google Scholar
  98. Tisato N, Saur F, Bernasconi SM, Bruijn RH, De Waele J (2012) Hypogenic contribution to speleogenesis in a predominant epigenic karst system: a case study from the Venetian Alps, Italy. Geomorphology 151:156–163CrossRefGoogle Scholar
  99. Tóth J (1999) Groundwater as a geologic agent: an overview of the cases, processes and manifestations. Hydrogeol J 7(1):1–14CrossRefGoogle Scholar
  100. Viehmann I (1992) Experimental methods in studying the cave rafts. Theor Appl Karstology 5:213–215Google Scholar
  101. Virág M, Kálmánfi-Ast H, Mindszenty A (2013a) Barlangszintek, barlangi kiválások és travertínók térbeli jellemzése (Spatial characterization of cave levels, cave minerals and travertines). In: (Mindszenty A (ed.): Budapest: földtani értékek és az ember. Városgeológiai tanulmányok (Budapest: geoheritage and humans—urban geological studies) („In urbe et pro urbe”). ELTE Eötvös Kiadó, Budapest, pp 259–263Google Scholar
  102. Virág M, Leél-Őssy Sz, Mindszenty A (2013b) Szpeleológiai adottságok. A felszín alatti víz oldóhatásának tanúi: a budai barlangok (Speleological fundamentals. Speleogenesis in the Buda Thermal Karst). In: Mindszenty A (ed) Budapest: földtani értékek és az ember. Városgeológiai tanulmányok (Budapest: geoheritage and humans—urban geological studies) („In urbe et pro urbe”). ELTE Eötvös Kiadó, Budapest, pp 104–111Google Scholar
  103. Virág M (2016) Történeti áttekintés a budai barlangok keletkezéséről—a klasszikus karsztfejlődéstől a hipogén barlangképződésig (speleogenesis in the Buda Thermal Karst—a historical review from the “classical” epigenic to hypogenic theories). Karszt és Barl 2012–14:24–46 (in Hungarian with English abstract)Google Scholar
  104. Vörös P, Virág M, Mindszenty A, Bendő Z, Németh T, Leél-Őssy Sz (2013) Eocén kőzeteket átszelő repedéskitöltésekhez kapcsolódó elváltozott zónák a budai barlangokban (Altered zones along the vein-filling mineral paragenesis in Eocene host rocks in the caves of Buda Thermal Karst). In: Mindszenty A (ed) Budapest: földtani értékek és az ember. Városgeológiai tanulmányok (Budapest: geoheritage and humans—urban geological studies) (“In urbe et pro urbe”). ELTE Eötvös Kiadó, Budapest, pp 34–39Google Scholar
  105. Wein Gy (1977) A Budai-hegység tektonikája (tectonics of Buda Mountains). MÁFI, BudapestGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physical and Applied GeologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations