Advertisement

Fluid Flow Systems and Hypogene Karst of the Transdanubian Range, Hungary—With Special Emphasis on Buda Thermal Karst

  • Judit Mádl-SzőnyiEmail author
  • Anita Erőss
  • Ádám Tóth
Chapter
  • 1.1k Downloads
Part of the Cave and Karst Systems of the World book series (CAKASYWO)

Abstract

Carbonate regions have great economic importance for water supply, oil and gas reservoirs, geothermal fluids and also Mississippi Valley-type ore deposits. Therefore, the understanding and consequences of flow pattern in carbonates require special interest. The hypogene and epigene karst areas of carbonate sequences were distinguished and associated with different orders of groundwater flow. However, the effect of confinement on flow pattern of carbonate aquifers was not fully considered in previous studies. We demonstrated the most important prerequisites and consequences of the application of the gravity-driven regional groundwater flow concept for carbonate sequences at different degrees of confinement. The results put into a frame the distribution of different springs and caves (epigene and hypogene) of the carbonate system of the Transdanubian Range, Hungary, and provide insights for better understanding of the hydrogeology of areas with similar unconfined and confined settings. Relationship among different flow regimes, distribution and character of springs and hypogene karstification processes, in addition to natural discharge-related phenomena, such as mineral and microbial precipitates, were recognized in the area of Buda Thermal Karst. This area is a natural laboratory where the connection between groundwater flow and karstification processes can be studied.

Keywords

Spring Groundwater flow Mineral and microbial precipitate Confined and unconfined carbonate aquifers Basinal fluid 

Notes

Acknowledgements

The research was supported by the Hungarian OTKA Research Fund (NK 101356).

References

  1. Alföldi L (1979) Budapesti Hévizek. Thermal waters of Budapest. VITUKI Közl 20:1–102Google Scholar
  2. Alföldi L, Kapolyi L (eds) (2007) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, BudapestGoogle Scholar
  3. Alföldi L, Bélteky L, Böcker T, Horváth J, Korim K, Rémi R (eds) (1968) Budapest hévizei [Thermal waters of Budapest]. Hungarian Institute for Water Resources Research Budapest, BudapestGoogle Scholar
  4. Anda D, Büki G, Krett G, Makk J, Márialigeti K, Erőss A, Mádl-Szőnyi J, Borsodi A (2014) Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia thermal spring (Budapest, Hungary). Acta Microbiol Immunol Hung 61(3):329–346CrossRefGoogle Scholar
  5. Andre BJ, Rajaram H (2005) Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems. Water Resour Res 41:W01015CrossRefGoogle Scholar
  6. Back WB (1966) Hydrochemical facies and ground-water flow patterns in northern part of the Atlantic Coastal Plain. US Geol Survey Prof Pap 498A:42Google Scholar
  7. Bodor P, Tóth Á, Kovács J, Mádl-Szőnyi J (2014) Multidimensional data analysis of natural springs in a carbonate region. Extended Abstract, EAGE/TNO workshop: basin hydrodynamic systems in relations to their contained resources, Utrecht, The Netherlands, 6–8 May 2015Google Scholar
  8. Borsodi A, Knáb M, Krett G, Makk J, Márialigeti K, Erőss A, Mádl-Szőnyi J (2012) Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary. Geomicrobiol J 29(7):611–627CrossRefGoogle Scholar
  9. Bögli A (1964) Mischungskorrosion, ein Beitrag zur Verkarstungsproblem. Erdkunde 18:83–92CrossRefGoogle Scholar
  10. Bretz JH (1949) Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57:447–463CrossRefGoogle Scholar
  11. Csepregi A (2007) A karsztvíztermelés hatása a Dunántúli–középhegység vízháztartására [The effect of water withdrawal on the water balance of the Transdanubian Range]. In: Alföldi L, Kapolyi L (eds) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, Budapest, pp 77–112Google Scholar
  12. Déri-Takács J, Erőss A, Kovács J (2015) The chemical characterization of the thermal waters in Budapest, Hungary by using multivariate exploratory techniques. Environ Earth Sci 74(12):7475–7486. doi: 10.1007/s12665-014-3904-3 CrossRefGoogle Scholar
  13. Dobosy P, Sávoly Z, Óvári M, Mádl-Szonyi J, Záray G (2016) Microchemical characterization of biogeochemical samples collected from the Buda Thermal Karst System, Hungary. Microchem J 124:116–120CrossRefGoogle Scholar
  14. Dombrádi E, Sokoutis D, Bada G, Cloetingh S, Horváth F (2010) Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophysics 484:103–118CrossRefGoogle Scholar
  15. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84:3803–3814CrossRefGoogle Scholar
  16. Dreybrodt W (1988) Processes in karst systems. Springer, BerlinCrossRefGoogle Scholar
  17. Egemeier SJ (1981) Cavern development by thermal waters. Nat Speleol Soc Bull 43:31–51Google Scholar
  18. Engelen GB, Kloosterman FH (1996) Hydrological systems analysis: methods and applications. Kluwer, DordrechtCrossRefGoogle Scholar
  19. Erhardt I, Ötvös V, Erőss A, Czauner B, Simon Sz, Mádl-Szőnyi J (2017) Hydraulic evaluation of the hypogenic karst area in Budapest (Hungary). Hydrol J doi: 10.1007/s10040-017-1591-3
  20. Erőss A (2010) Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda Thermal Karst, Hungary. PhD thesis, Eötvös Loránd UniversityGoogle Scholar
  21. Erőss A, Mádl-Szőnyi J, Csoma ÉA (2008) Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. Cent Eur Geol 51:267–281CrossRefGoogle Scholar
  22. Erőss A, Mádl-Szőnyi J, Csoma ÉA (2011a) New conceptual flow and cave development models of the Buda Thermal Karst (Hungary). In: Bertrand C, Carry N, Mudry J, Pronk M, Zwahlen F (eds) Proceedings H2Karst, 9th conference on limestone hydrogeology, Besancon (France). UMR 6249 Chrono-Environnement, pp 165–168Google Scholar
  23. Erőss A, Mádl-Szőnyi J, Borsodi AK, Knáb M, Csoma ÉA, Mindszenty A (2011b) Results of in situ dissolution experiment to understand hypogenic karstification processes, Buda Thermal Karst, Hungary. In: Bertrand C, Carry N, Mudry J, Pronk M, Zwahlen F (eds) Proceedings H2Karst, 9th conference on limestone hydrogeology, Besancon (France). UMR 6249 Chrono-Environnement, pp 161–164Google Scholar
  24. Erőss A, Mádl-Szőnyi J, Csoma ÉA (2012a) Hypogenic karst development in a hydrogeological context, Buda Thermal Karst, Budapest, Hungary. In: Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. IAH selected papers on hydrogeology 17. Taylor and Francis, London, pp 119–133Google Scholar
  25. Erőss A, Mádl-Szőnyi J, Surbeck H, Horváth Á, Goldscheider N, Csoma AÉ (2012b) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137CrossRefGoogle Scholar
  26. Fodor L (2010) Mezozoos-kainozoos feszültségmezők és törésrendszerek a Pannon-medence ÉNy-i részén: módszertan és szerkezeti elemzés [Stress-fields and structural settings in the NW Pannonian Basin: Methods and structural analysis]. PhD thesis, Magyar Tudományos AkadémiaGoogle Scholar
  27. Fodor L, Magyari Á, Fogarasi A, Palotás K (1994) Tercier szerkezetfejlődés és késő paleogén üledékképződés a Budai-hegységben. A Budai-vonal új értelmezése (Tertiary tectonics and Late Paleogene sedimentation in the Buda Hills, Hungary. A new interpretation of the Buda line) [in Hungarian]. Földtani Közlöny 124(2):130–305Google Scholar
  28. Ford DC, Williams PDW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  29. Goldscheider N, Drew D (2007) Methods in Karst hydrogeology. IAH international contributions to hydrogeology. Taylor & Francis, LondonGoogle Scholar
  30. Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318CrossRefGoogle Scholar
  31. Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881CrossRefGoogle Scholar
  32. Haas J (ed) (2001) Geology of Hungary. Eötvös University Press, BudapestGoogle Scholar
  33. Han WS, McPherson BJ (2009) Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energ Conv Manag 50(10):2570–2582CrossRefGoogle Scholar
  34. Havril T, Molson J, Mádl-Szőnyi J (2016) Evolution of fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences. Mar Pet Geol 78:738–749. doi: 10.1016/j.marpetgeo.2016.10.001 CrossRefGoogle Scholar
  35. Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. NM Bureau Mines Min Resour Bull 117:150Google Scholar
  36. Hubbert MK (1940) The theory of ground-water motion. J Geol 48(8):785–944CrossRefGoogle Scholar
  37. Klimchouk AB (2000) Speleogenesis under deep-seated and confined settings. In: Klimchouk A et al (eds) Speleogenesis: evolution of Karst Aquifers. National Speleological Society, Huntsville, pp 244–260Google Scholar
  38. Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special paper no. 1, National Cave and Karst Research Institute, Carlsbad, NMGoogle Scholar
  39. Klimchouk AB (2012) Speleogenesis, hypogenic. In: Culver DC and White WB (eds.), Encyclopedia of caves, 2nd edn. Elsevier, Academic Press, Chennai, pp 748–765Google Scholar
  40. Kresič N, Stevanovič Z (2009) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier, AmsterdamGoogle Scholar
  41. Kuzmann E, Homonnay Z, Kovács K, Zsabka P, Erőss A, Mádl-Szőnyi J (2014) Mössbauer study of biofilms formed at spring caves of Buda Karst, Hungary. Hyperfine Interact 226(1–3):571–577CrossRefGoogle Scholar
  42. LaMoreaux PE, LeGrand HE, Stringfield VT, Tolson JS (1975) Progress of knowledge about hydrology of carbonate terranes. Alabama Geol Surv Bull 94, part EGoogle Scholar
  43. Langmuir D (1971) The geochemistry of carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045CrossRefGoogle Scholar
  44. Leél-Őssy Sz (1995) A Rózsadomb és környékének különleges barlangjai (Particular caves of the Rózsadomb Area) [in Hungarian]. Földtani Közlöny 125(3–4):363–432Google Scholar
  45. Leél-Őssy Sz, Surányi G (2003) Peculiar hydrothermal caves in Budapest, Hungary. Acta Geol Hung 46(4):407–436Google Scholar
  46. Leél-Őssy Sz (2017) Caves of the Buda Thermal karst. In: Klimchouk AB, Palmer AN, De Waele J, Auler AS, Audra P (eds) Hypogene Karst Regions and Caves of the World. Springer Internation Publishing Google Scholar
  47. Mádl-Szőnyi J (2015) Genesis and utilization of thermal flow in deep carbonate systems. In: Stevanovic Z (ed) Karst aquifers—Characterization and engineering. Springer International Publishing, Cham, pp 654–667Google Scholar
  48. Mádl-Szőnyi J, Tóth Á (2015) Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23(7):1359–1380. doi: 10.1007/s10040-015-1274-x CrossRefGoogle Scholar
  49. Mádl-Szőnyi J, Tóth Á (2017) Topographically driven fluid flow at the boundary of confined and unconfined sub-basins of carbonates: basic pattern and evaluation approach. In: Renard P, Bertrand C (eds) EuroKarst 2016, Neuchâtel, advances in the hydrogeology of karst and carbonate reservoirs. Springer, SwitzerlandGoogle Scholar
  50. Mádl-Szőnyi J, Király L, Müller I, Pethő S, Baross G, Faragó É, Halupka G, Nyúl K in Mindszenty A (ed) (1999) A Rózsadombi termálkarszt monitoring működtetése (Operation of the monitoring system in the Rózsadomb area). Unpublished report, 2nd part (in Hungarian). ELTE TTK Alkalmazott és Környezetföldtani Tanszék, BudapestGoogle Scholar
  51. Mádl-Szőnyi J, Pulay E, Tóth Á, Bodor P (2015) Regional underpressure: a factor of uncertainty in the geothermal exploration of deep carbonates, Gödöllő Region, Hungary. Environ Earth Sci 74(12):7523–7538CrossRefGoogle Scholar
  52. Ötvös V, Erhardt I, Czauner B, Erőss A, Sz Simon, Mádl-Szőnyi J (2013) Hydraulic evaluation of the flow system of Buda Thermal karst, Budapest, Hungary. In: Szőcs T, Fórizs I (eds) Proceedings of the IAH Central European groundwater conference 2013. Szeged University Press, Szeged, pp 135–136Google Scholar
  53. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  54. Palmer AN (1995) Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. AAPG Special Volume 77-101Google Scholar
  55. Papp F (1942) Budapest meleg gyógyforrásai [Thermal medicinal springs of Budapest]. A Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet Kiadványa [Book of the Central Resort Spa and Rheumatology Research Institute], BudapestGoogle Scholar
  56. Plummer LN, Wigley TML, Parkhurst DL (1978) Kinetics of calcite dissolution in CO2-water systems at 5 °C to 85,560 °C and 0.0 to 1.0 atm CO2. Am J Sci 278(2):179–216CrossRefGoogle Scholar
  57. Poros Z, Mindszenty A, Molnár F, Pironon J, Győri O, Ronchi P, Szekeres Z (2012) Imprints of hydrocarbon bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary. Int J Earth Sci 10:429–452CrossRefGoogle Scholar
  58. Sass I (2007) Geothermie und Grundwasser [Geothermics and groundwater]. Grundwasser 12(2):93CrossRefGoogle Scholar
  59. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276(1):137–158CrossRefGoogle Scholar
  60. Takács-Bolner K, Kraus S (1989) A melegvizes eredetű barlangok kutatásának eredményei (Results of research into caves with thermal water origins) [in Hungarian]. Karszt és Barlang 1–2:61–66Google Scholar
  61. Tazaki K (2009) Observation of microbial mats in radioactive hot springs. Sci Rep Kanazawa Univ 53:25–37Google Scholar
  62. Tóth J (1971) Groundwater discharge: a common generator of diverse geologic and morphologic phenomena. IASH Bull 16(1–3):7–24Google Scholar
  63. Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16CrossRefGoogle Scholar
  64. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  65. Tóth J (2009a) Gravitational systems of groundwater flow theory, evaluation, utilization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. Tóth J (2009b) Springs seen and interpreted in the context of groundwater flow-systems. GSA annual meeting 2009, Portland, 18–21 Oct 2009. Geol Soc Am Abst Prog 41(7):173Google Scholar
  67. Tóth Á, Mádl-Szőnyi J (2016) Scale-dependent evaluation of an unconfined carbonate system—Practical application, consequences and significance. In: Stevanovic Z, Kresic N, Kukuric N (eds) Karst without boundaries, IAH—Selected papers on hydrogeology 23. CRC Press, Taylor and Francis, London, pp 199–214Google Scholar
  68. Wellman TP, Poeter EP (2006) Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado. Water Resour Res 42(8):W08410CrossRefGoogle Scholar
  69. Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environ Geol 25:9–15CrossRefGoogle Scholar
  70. Zhang G, Taberner C, Cartwright L, Xu T (2011) Injection of supercritical CO2 into deep saline carbonate formations: predictions from geochemical modeling. SPE J 16(4):959–967. doi: 10.2118/121272-PA CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Judit Mádl-Szőnyi
    • 1
    Email author
  • Anita Erőss
    • 1
  • Ádám Tóth
    • 1
  1. 1.József and Erzsébet Tóth Endowed Hydrogeology Chair, Department of Physical and Applied GeologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations