Skip to main content

Lattice Methods and the Nuclear Few- and Many-Body Problem

  • Chapter
  • First Online:
An Advanced Course in Computational Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 936))

Abstract

This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  2. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  3. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)

    Article  ADS  Google Scholar 

  4. J.E. Drut, A.N. Nicholson, J. Phys. G Nucl. Part. Phys. 40, 043101 (2013)

    Article  ADS  Google Scholar 

  5. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  6. R.L. Stratonovich, Sov. Phys. Dokl. 2, 416 (1958)

    ADS  Google Scholar 

  7. D.H. Weingarten, D.N. Petcher, Phys. Lett. B 99, 333 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. R.T. Scalettar, D.J. Scalapino, R.L. Sugar, Phys. Rev. B 34, 7911 (1986)

    Article  ADS  Google Scholar 

  9. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987)

    Article  ADS  Google Scholar 

  10. H.M. Müller, S.E. Koonin, R. Seki, U. van Kolck, Phys. Rev. C 61, 044320 (2000)

    Article  ADS  Google Scholar 

  11. D. Lee, B. Borasoy, T. Schäfer, Phys. Rev. C 70, 014007 (2004)

    Article  ADS  Google Scholar 

  12. D. Lee, T. Schäfer, Phys. Rev. C 73, 015202 (2006)

    Article  ADS  Google Scholar 

  13. B. Borasoy, H. Krebs, D. Lee, U.G. Meißner, Nucl. Phys. A 768, 179 (2006)

    Article  ADS  Google Scholar 

  14. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 31, 105 (2007)

    Article  ADS  Google Scholar 

  15. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 35, 343 (2008)

    Article  ADS  Google Scholar 

  16. G. Wlazłowski, J.W. Holt, S. Moroz, A. Bulgac, K.J. Roche, Phys. Rev. Lett. 113 (18), 182503 (2014)

    Article  ADS  Google Scholar 

  17. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 41, 125 (2009)

    Article  ADS  Google Scholar 

  18. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Phys. Rev. Lett. 104, 142501 (2010)

    Article  ADS  Google Scholar 

  19. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  Google Scholar 

  20. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Phys. Lett. B 732, 110 (2014)

    Article  ADS  Google Scholar 

  21. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.G. Meißner, G. Rupak, Phys. Rev. Lett. 112 (10), 102501 (2014)

    Article  ADS  Google Scholar 

  22. S. Elhatisari, et al., Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117 (13), 132501 (2016). doi:10.1103/PhysRevLett.117.132501

    Google Scholar 

  23. G. Rupak, D. Lee, Phys. Rev. Lett. 111 (3), 032502 (2013)

    Article  ADS  Google Scholar 

  24. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.G. Meißner, Nature 528, 111 (2015). doi:10.1038/nature16067

    Article  ADS  Google Scholar 

  25. A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, B.D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, W. Nazarewicz, Phys. Rev. C 91, 051301 (2015)

    Article  ADS  Google Scholar 

  26. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014)

    Article  ADS  Google Scholar 

  27. M. Lüscher, Commun. Math. Phys. 104, 177 (1986)

    Article  ADS  Google Scholar 

  28. M. Lüscher, Nucl. Phys. B 354, 531 (1991)

    Article  ADS  Google Scholar 

  29. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 34, 185 (2007)

    Article  ADS  Google Scholar 

  30. J. Carlson, V. Pandharipande, R. Wiringa, Nucl. Phys. A 424 (1), 47 (1984)

    Article  ADS  Google Scholar 

  31. B.N. Lu, T.A. Lähde, D. Lee, U.G. Meißner, Precise determination of lattice phase shifts and mixing angles. Phys. Lett. B 760, 309–313 (2016). doi:10.1016/j.physletb.2016.06.081

    Article  ADS  Google Scholar 

  32. M. Pine, D. Lee, G. Rupak, Eur. Phys. J. A 49, 151 (2013)

    Article  ADS  Google Scholar 

  33. A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum, H. Krebs, Scattering cluster wave functions on the lattice using the adiabatic projection method. Phys. Rev C 92 (5), 054612 (2015). doi:10.1103/PhysRevC.92.054612

    Google Scholar 

  34. M. Creutz, Phys. Rev. D 38, 1228 (1988)

    Article  ADS  Google Scholar 

  35. M. Creutz, Found. Phys. 30, 487 (2000)

    Article  MathSciNet  Google Scholar 

  36. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015). doi:10.1103/RevModPhys.87.1067

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful for discussions with Amy Nicholson and Morten Hjorth-Jensen. He is also greatly indebted to his collaborators Jose Alarcón, Dechuan Du, Serdar Elhatisari, Evgeny Epelbaum, Nico Klein, Hermann Krebs, Timo Lähde, Ning Li, Bing-nan Lu, Thomas Luu, Ulf-G. Meißner, Alexander Rokash, and Gautam Rupak. Partial financial support provided by the U.S. Department of Energy (DE-FG02-03ER41260). Computational resources were provided by the Jülich Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, D. (2017). Lattice Methods and the Nuclear Few- and Many-Body Problem. In: Hjorth-Jensen, M., Lombardo, M., van Kolck, U. (eds) An Advanced Course in Computational Nuclear Physics. Lecture Notes in Physics, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-53336-0_6

Download citation

Publish with us

Policies and ethics