Skip to main content

In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 936))

Abstract

We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green’s Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are mathematical subtleties due to \(\hat{H}(s)\) being an operator that is only bounded from below, and having a spectrum that is part discrete, part continuous (see, e.g., [67, 68]). In practice, we are forced to work with approximate, finite-dimensional matrix representations of \(\hat{H}(s)\) in any case.

  2. 2.

    We use the conventional partial wave notation2S+1 L J , where L = 0, 1, 2,  is indicated by the letters S, P, D, . The isospin channel is fixed by requiring the antisymmetry of the NN wavefunction, leading to the condition (−1)L+S+T = −1.

  3. 3.

    In quantum chemistry, what we call a valence space is usually refereed to as the active space.

References

  1. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  2. E. Fermi, Z. Phys. 88, 161 (1934)

    Article  ADS  Google Scholar 

  3. W. Detmold, Nuclear Physics from Lattice QCD (Springer International Publishing, Cham, 2015), p. 153

    Google Scholar 

  4. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  5. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  6. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  7. R. Machleidt, D. Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  8. A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. C 90, 054323 (2014)

    Article  ADS  Google Scholar 

  9. J.E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K.E. Schmidt, A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016)

    Article  ADS  Google Scholar 

  10. S. Kölling, E. Epelbaum, H. Krebs, U.G. Meißner, Phys. Rev. C 84, 054008 (2011)

    Article  ADS  Google Scholar 

  11. A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, B.D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, W. Nazarewicz, Phys. Rev. C 91, 051301 (2015)

    Article  ADS  Google Scholar 

  12. A.M. Shirokov, I.J. Shin, Y. Kim, M. Sosonkina, P. Maris, J.P. Vary, Phys. Lett. B 761, 87 (2016)

    Article  ADS  Google Scholar 

  13. G.P. Lepage (1989). arXiv:hep-ph/0506330

    Google Scholar 

  14. G.P. Lepage (1997). arXiv:nucl-th/9706029

    Google Scholar 

  15. S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)

    Article  ADS  Google Scholar 

  16. S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)

    Google Scholar 

  17. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

    Article  ADS  Google Scholar 

  18. R.J. Furnstahl, K. Hebeler, Rep. Prog. Phys. 76, 126301 (2013)

    Article  ADS  Google Scholar 

  19. H.A. Bethe, Ann. Rev. Nucl. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  20. W. Polyzou, W. Glöckle, Few-Body Syst. 9, 97 (1990)

    Article  ADS  Google Scholar 

  21. K.A. Brueckner, C.A. Levinson, H.M. Mahmoud, Phys. Rev. 95, 217 (1954)

    Article  ADS  Google Scholar 

  22. B.D. Day, Rev. Mod. Phys. 39, 719 (1967)

    Article  ADS  Google Scholar 

  23. B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  24. B.R. Barrett, M.W. Kirson, Nucl. Phys. A 148, 145 (1970)

    Article  ADS  Google Scholar 

  25. P. Goode, M.W. Kirson, Phys. Lett. B 51, 221 (1974)

    Article  ADS  Google Scholar 

  26. J.P. Vary, P.U. Sauer, C.W. Wong, Phys. Rev. C 7, 1776 (1973)

    Article  ADS  Google Scholar 

  27. S.D. Glazek, K.G. Wilson, Phys. Rev. D 48, 5863 (1993)

    Article  ADS  Google Scholar 

  28. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)

    Article  ADS  Google Scholar 

  29. S.K. Bogner, R.J. Furnstahl, S. Ramanan, A. Schwenk, Nucl. Phys. A 773, 203 (2006)

    Article  ADS  Google Scholar 

  30. A. Tichai, J. Langhammer, S. Binder, R. Roth, Phys. Lett. B 756, 283 (2016)

    Article  ADS  Google Scholar 

  31. B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)

    Article  ADS  Google Scholar 

  32. E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. Rev. C 87, 054312 (2013)

    Article  ADS  Google Scholar 

  33. H. Hergert, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 110, 242501 (2013)

    Article  ADS  Google Scholar 

  34. R. Roth, A. Calci, J. Langhammer, S. Binder, Phys. Rev. C 90, 024325 (2014)

    Article  ADS  Google Scholar 

  35. S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736, 119 (2014)

    Article  ADS  Google Scholar 

  36. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014)

    Article  ADS  Google Scholar 

  37. G. Hagen, M. Hjorth-Jensen, G.R. Jansen, T. Papenbrock, Phys. Scr. 91, 063006 (2016)

    Article  ADS  Google Scholar 

  38. K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106, 222502 (2011)

    Article  ADS  Google Scholar 

  39. H. Hergert, S.K. Bogner, S. Binder, A. Calci, J. Langhammer, R. Roth, A. Schwenk, Phys. Rev. C 87, 034307 (2013)

    Article  ADS  Google Scholar 

  40. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rep. 621, 165 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Kehrein, The Flow Equation Approach to Many-Particle Systems. Springer Tracts in Modern Physics, vol. 237 (Springer, Berlin, Heidelberg, 2006)

    Google Scholar 

  42. C. Heidbrink, G. Uhrig, Eur. Phys. J. B 30, 443 (2002). 10.1140/epjb/e2002-00401-9

    Article  ADS  Google Scholar 

  43. J. Krones, G.S. Uhrig, Phys. Rev. B 91, 125102 (2015)

    Article  ADS  Google Scholar 

  44. I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  45. S.R. White, J. Chem. Phys. 117, 7472 (2002)

    Article  ADS  Google Scholar 

  46. D. Mukherjee, W. Kutzelnigg, J. Chem. Phys. 114, 2047 (2001)

    Article  ADS  Google Scholar 

  47. F.A. Evangelista, J. Chem. Phys. 141, 054109 (2014)

    Article  ADS  Google Scholar 

  48. V. Bach, J.B. Bru, J. Evol. Equ. 10, 425 (2010)

    Article  MathSciNet  Google Scholar 

  49. B. Boutin, N.J. Raymond, Evol. Equ. (2016). doi:10.1007/s00028-016-0337-3

    Google Scholar 

  50. R. Brockett, Linear Algebra Appl. 146, 79 (1991)

    Article  MathSciNet  Google Scholar 

  51. M.T. Chu, Linear Algebra Appl. 215, 261 (1995)

    Article  MathSciNet  Google Scholar 

  52. T.D. Morris, N.M. Parzuchowski, S.K. Bogner, Phys. Rev. C 92, 034331 (2015)

    Article  ADS  Google Scholar 

  53. H. Hergert, Phys. Scr. 92, 023002 (2017)

    Article  ADS  Google Scholar 

  54. G. Golub, C. Van Loan, Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press, Baltimore, MD, 2013)

    Google Scholar 

  55. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  56. L.F. Shampine, M.K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem (W. H. Freeman, San Francisco, 1975)

    MATH  Google Scholar 

  57. M. Hjorth-Jensen, Computational Physics Lecture Notes (2015). https://github.com/CompPhysics/ComputationalPhysics

    Google Scholar 

  58. A.C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers. IMACS Transactions on Scientific Computation, vol. 1 (North-Holland Publishing Company, Amsterdam, 1983), p. 54

    Google Scholar 

  59. K. Radhakrishnan, A.C. Hindmarsh, Description and use of LSODE, the Livermore solver for ordinary differential equations. Technical Report, Lawrence Livermore National Laboratory (1993)

    Book  Google Scholar 

  60. P.N. Brown, A.C. Hindmarsh, Appl. Math. Comput. 31, 40 (1989)

    MathSciNet  Google Scholar 

  61. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950)

    Article  Google Scholar 

  62. W.E. Arnoldi, Q. Appl. Math. 9, 17 (1951)

    Google Scholar 

  63. E.R. Davidson, Comput. Phys. Commun. 53, 49 (1989)

    Article  ADS  Google Scholar 

  64. C. Yang, H.M. Aktulga, P. Maris, E. Ng, J.P. Vary, in Proceedings of International Conference ‘Nuclear Theory in the Supercomputing Era — 2013’ (NTSE-2013), Ames, IA, May 13–17, 2013, ed. by A.M. Shirokov, A.I. Mazur (2013), p. 272

    Google Scholar 

  65. H. Hergert, R. Roth, Phys. Lett. B 682, 27 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  66. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  67. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015)

    Article  ADS  Google Scholar 

  68. J.D. Holt, T.T.S. Kuo, G.E. Brown, S.K. Bogner, Nucl. Phys. A 733, 153 (2004)

    Article  ADS  Google Scholar 

  69. K.A. Wendt, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 83, 034005 (2011)

    Article  ADS  Google Scholar 

  70. E.R. Anderson, S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 82, 054001 (2010)

    Article  ADS  Google Scholar 

  71. M.D. Schuster, S. Quaglioni, C.W. Johnson, E.D. Jurgenson, P. Navrátil, Phys. Rev. C 90, 011301 (2014)

    Article  ADS  Google Scholar 

  72. E.D. Jurgenson, P. Navrátil, R.J. Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)

    Article  ADS  Google Scholar 

  73. K. Hebeler, Phys. Rev. C 85, 021002 (2012)

    Article  ADS  Google Scholar 

  74. K.A. Wendt, Phys. Rev. C 87, 061001 (2013)

    Article  ADS  Google Scholar 

  75. E. Anderson, S.K. Bogner, R.J. Furnstahl, E.D. Jurgenson, R.J. Perry, A. Schwenk, Phys. Rev. C 77, 037001 (2008)

    Article  ADS  Google Scholar 

  76. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003)

    Article  ADS  Google Scholar 

  77. P. Brown, G. Byrne, A. Hindmarsh, SIAM J. Sci. Stat. Comput. 10, 1038 (1989)

    Article  Google Scholar 

  78. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, Phys. Rev. Lett. 107, 072501 (2011)

    Article  ADS  Google Scholar 

  79. H. Hergert, S.K. Bogner, T.D. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)

    Article  ADS  Google Scholar 

  80. R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012)

    Article  ADS  Google Scholar 

  81. V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, T. Duguet, Phys. Rev. C 89, 061301 (2014)

    Article  ADS  Google Scholar 

  82. E.D. Jurgenson, P. Navrátil, R.J. Furnstahl, Phys. Rev. C 83, 034301 (2011)

    Article  ADS  Google Scholar 

  83. K.A. Wendt, Advances in the application of the similarity renormalization group to strongly interacting systems. Ph.D. thesis, The Ohio State University (2013)

    Google Scholar 

  84. M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  85. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.G. Meißner, H. Witała, Phys. Rev. C 66, 064001 (2002)

    Article  ADS  Google Scholar 

  86. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006)

    Article  ADS  Google Scholar 

  87. D. Gazit, S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 103, 102502 (2009)

    Article  ADS  Google Scholar 

  88. H.W. Griesshammer, in Proceedings of the “8th International Workshop on Chiral Dynamics”, vol. PoS(CD15) (2015), p. 104

    Google Scholar 

  89. R. Roth, T. Neff, H. Feldmeier, Prog. Part. Nucl. Phys. 65, 50 (2010)

    Article  ADS  Google Scholar 

  90. P. Ring, P. Schuck, The Nuclear Many-Body Problem, 1st edn. (Springer, Berlin, 1980)

    Book  Google Scholar 

  91. G. Hagen, T. Papenbrock, D.J. Dean, A. Schwenk, A. Nogga, M. Włoch, P. Piecuch, Phys. Rev. C 76, 034302 (2007)

    Article  ADS  Google Scholar 

  92. S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil, R. Roth, Phys. Rev. C 88, 054319 (2013)

    Article  ADS  Google Scholar 

  93. E. Gebrerufael, A. Calci, R. Roth, Phys. Rev. C 93, 031301 (2016)

    Article  ADS  Google Scholar 

  94. K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. C 85, 061304 (2012)

    Article  ADS  Google Scholar 

  95. A. Fetter, J. Walecka, Quantum Theory of Many-particle Systems. Dover Books on Physics (Dover, New York, 2003)

    Google Scholar 

  96. W. Kutzelnigg, J. Chem. Phys. 77, 3081 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  97. W. Kutzelnigg, J. Chem. Phys. 80, 822 (1984)

    Article  ADS  Google Scholar 

  98. W. Kutzelnigg, D. Mukherjee, J. Chem. Phys. 116, 4787 (2002)

    Article  ADS  Google Scholar 

  99. W. Kutzelnigg, D. Mukherjee, J. Chem. Phys. 120, 7350 (2004)

    Article  ADS  Google Scholar 

  100. P.S. Epstein, Phys. Rev. 28, 695 (1926)

    Article  ADS  Google Scholar 

  101. R.K. Nesbet, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 230, 312 (1955)

    Google Scholar 

  102. J. Suhonen, From Nucleons to Nucleus. Concepts of Microscopic Nuclear Theory, 1st edn. (Springer, Berlin, 2007)

    Google Scholar 

  103. T.T.S. Kuo, J. Shurpin, K.C. Tam, E. Osnes, P.J. Ellis, Ann. Phys. 132, 237 (1981)

    Article  ADS  Google Scholar 

  104. N.M. Parzuchowski, T.D. Morris, S.K. Bogner, Phys. Rev. C (2017, in press). arXiv:1611.00661

    Google Scholar 

  105. D.R. Thompson, M. Lemere, Y.C. Tang, Nucl. Phys. A 286 (1), 53 (1977)

    Article  ADS  Google Scholar 

  106. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, ACM Trans. Math. Softw. 31, 363 (2005)

    Article  Google Scholar 

  107. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  Google Scholar 

  108. S. Blanes, F. Casas, J. Oteo, J. Ros, Phys. Rep. 470, 151 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  109. D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)

    Article  ADS  Google Scholar 

  110. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II: Nuclear Deformations (World Scientific, Singapore, 1999)

    Google Scholar 

  111. R.E. Peierls, Proc. R. Soc. Lond. A 333, 157 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  112. T. Duguet, J. Phys. G 42, 025107 (2015)

    Article  ADS  Google Scholar 

  113. W. Kutzelnigg, D. Mukherjee, J. Chem. Phys. 107, 432 (1997)

    Article  ADS  Google Scholar 

  114. D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997)

    Article  ADS  Google Scholar 

  115. L. Kong, M. Nooijen, D. Mukherjee, J. Chem. Phys. 132, 234107 (2010)

    Article  ADS  Google Scholar 

  116. E. Gebrerufael, K. Vobig, H. Hergert, R. Roth, Phys. Rev. Lett. (2017, in press). arXiv:1610.05254

    Google Scholar 

  117. D.I. Lyakh, M. Musiał, V.F. Lotrich, R.J. Bartlett, Chem. Rev. 112, 182 (2012)

    Article  Google Scholar 

  118. H. Hergert, R. Roth, Phys. Rev. C 80, 024312 (2009)

    Article  ADS  Google Scholar 

  119. V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J.D. Holt, S.R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016)

    Article  ADS  Google Scholar 

  120. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Google Scholar 

  121. S.R. Stroberg, H. Hergert, J.D. Holt, S.K. Bogner, A. Schwenk, Phys. Rev. C 93, 051301 (2016)

    Article  ADS  Google Scholar 

  122. S.R. Stroberg, A. Calci, H. Hergert, J.D. Holt, S.K. Bogner, R. Roth, A. Schwenk, Phys Rev. Lett. 118, 032502 (2017)

    Article  ADS  Google Scholar 

  123. B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

    Article  ADS  Google Scholar 

  124. S.K. Bogner, H. Hergert, J.D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)

    Article  ADS  Google Scholar 

  125. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  126. T.D. Morris, Systematic improvements of ab initio in-medium similarity renormalization group calculations. Ph.D. thesis, Michigan State University (2016)

    Google Scholar 

  127. A.G. Taube, R.J. Bartlett, J. Chem. Phys. 128, 044110 (2008)

    Article  ADS  Google Scholar 

  128. P. Piecuch, M. Włoch, J. Chem. Phys. 123, 224105 (2005)

    Article  ADS  Google Scholar 

  129. R. Roth, P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007)

    Article  ADS  Google Scholar 

  130. R. Roth, Phys. Rev. C 79, 064324 (2009)

    Article  ADS  Google Scholar 

  131. C. Li, F.A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)

    Article  Google Scholar 

  132. C. Li, F.A. Evangelista, J. Chem. Phys. 144, 164114 (2016)

    Article  ADS  Google Scholar 

  133. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  134. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to a multitude of colleagues for many stimulating discussions of the SRG and IMSRG that are reflected in this work. We are particularly grateful to Angelo Calci, Thomas Duguet, Dick Furnstahl, Kai Hebeler, Morten Hjorth-Jensen, Jason Holt, Robert Roth, Achim Schwenk, Ragnar Stroberg, and Kyle Wendt.

The preparation of this chapter was supported in part by NSF Grant No. PHY-1404159 and the NUCLEI SciDAC Collaboration under the U.S. Department of Energy Grant No. DE-SC0008511. H. H. gratefully acknowledges the National Superconducting Cyclotron Laboratory (NSCL)/Facility for Rare Isotope Beams (FRIB) and Michigan State University (MSU) for startup support during the preparation of this work. Computing resources were provided by the MSU High-Performance Computing Center (HPCC)/Institute for Cyber-Enabled Research (iCER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hergert .

Editor information

Editors and Affiliations

Appendix: Products and Commutators of Normal-Ordered Operators

Appendix: Products and Commutators of Normal-Ordered Operators

In this appendix, we collect the basic expressions for products and commutators of normal-ordered one- and two-body operators. All single-particle indices refer to the natural orbital basis, where the one-body density matrix is diagonal

$$\displaystyle{ \rho _{kl} = \langle \varPhi \vert \,a_{l}^{\dag }a_{ k}\,\vert \varPhi \rangle = n_{k}\delta _{kl}\,,\quad n_{k} \in \{ 0,1\}\,, }$$
(10.241)

(notice the convention for the indices of ρ, cf. [117]). We also define the hole density matrix

$$\displaystyle{ \bar{\rho }_{kl} \equiv \langle \varPhi \vert \,a_{k}a_{l}^{\dag }\,\vert \varPhi \rangle =\delta _{ kl} -\rho _{kl} \equiv \bar{n}_{k}\delta _{kl} }$$
(10.242)

whose eigenvalues are

$$\displaystyle{ \bar{n}_{k} = 1 - n_{k}\,, }$$
(10.243)

i.e., 0 for occupied and 1 for unoccupied single-particle states. Finally, we will again use the permutation symbol \(\hat{P}_{ij}\) to interchange the indices in any expression,

$$\displaystyle{ \hat{P}_{ij}g(\ldots,i,\ldots,j) \equiv g(\ldots,j,\ldots,i)\, }$$
(10.244)

(see Sect. 10.3 and Chap. 8).

10.1.1 Operator Products

$$\displaystyle{ \big\{a_{a}^{\dag }a_{ b}\big\}\big\{a_{k}^{\dag }a_{ l}\big\} =\big\{ a_{a}^{\dag }a_{ k}^{\dag }a_{ l}a_{b}\big\} - n_{a}\delta _{al}\big\{a_{k}^{\dag }a_{ b}\big\} + \bar{n}_{b}\delta _{bk}\big\{a_{a}^{\dag }a_{ l}\big\} + n_{a}\bar{n}_{b}\delta _{al}\delta _{bk} }$$
(10.245)
$$\displaystyle\begin{array}{rcl} \big\{a_{a}^{\dag }a_{ b}\big\}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}\big\}& =& \big\{a_{a}^{\dag }a_{ k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}a_{b}\big\} + \left (1 -\hat{P}_{mn}\right )n_{a}\delta _{an}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ m}a_{b}\big\} \\ & & -\left (1 -\hat{P}_{kl}\right )\bar{n}_{b}\delta _{bl}\big\{a_{a}^{\dag }a_{ k}^{\dag }a_{ n}a_{m}\big\} \\ & & -\left (1 -\hat{P}_{kl}\right )\left (1 -\hat{P}_{mn}\right )n_{a}\bar{n}_{b}\delta _{am}\delta _{bl}\big\{a_{k}^{\dag }a_{ n}\big\} {}\end{array}$$
(10.246)
$$\displaystyle\begin{array}{rcl} & & \big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ d}a_{c}\big\}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}\big\} \\ & & =\big\{ a_{a}^{\dag }a_{ b}^{\dag }a_{ k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}a_{d}a_{c}\big\} \\ & & + (1 -\hat{P}_{ab})(1 -\hat{P}_{mn})n_{a}\delta _{am}\big\{a_{b}^{\dag }a_{ k}^{\dag }a_{ l}^{\dag }a_{ n}a_{d}a_{c}\big\} \\ & & -(1 -\hat{P}_{cd})(1 -\hat{P}_{kl})\bar{n}_{c}\delta _{ck}\big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}a_{d}\big\} \\ & & + (1 -\hat{P}_{mn})n_{a}n_{b}\delta _{am}\delta _{bn}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ d}a_{c}\big\} + (1 -\hat{P}_{cd})\bar{n}_{c}\bar{n}_{d}\delta _{ck}\delta _{dl}\big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ n}a_{m}\big\} \\ & & + (1 -\hat{P}_{ab})(1 -\hat{P}_{cd})(1 -\hat{P}_{kl})(1 -\hat{P}_{mn})n_{a}\bar{n}_{c}\delta _{am}\delta _{ck}\big\{a_{b}^{\dag }a_{ l}^{\dag }a_{ n}a_{d}\big\} \\ & & + (1 -\hat{P}_{ab})(1 -\hat{P}_{kl})(1 -\hat{P}_{mn})n_{b}\bar{n}_{c}\bar{n}_{d}\delta _{bn}\delta _{ck}\delta _{dl}\big\{a_{a}^{\dag }a_{ m}\big\} \\ & & + (1 -\hat{P}_{cd})(1 -\hat{P}_{kl})(1 -\hat{P}_{mn})\bar{n}_{d}n_{a}n_{b}\delta _{dl}\delta _{an}\delta _{bm}\big\{a_{k}^{\dag }a_{ c}\big\} \\ & & + (1 -\hat{P}_{kl})(1 -\hat{P}_{mn})n_{a}n_{b}\bar{n}_{c}\bar{n}_{d}\delta _{am}\delta _{bn}\delta _{ck}\delta _{dl} {}\end{array}$$
(10.247)

10.1.2 Commutators

$$\displaystyle{ [\big\{a_{a}^{\dag }a_{ b}\big\},\big\{a_{k}^{\dag }a_{ l}\big\}] =\delta _{bk}\big\{a_{a}^{\dag }a_{ l}\big\} -\delta _{al}\big\{a_{k}^{\dag }a_{ b}\big\} + (n_{a} - n_{b})\delta _{al}\delta _{bk} }$$
(10.248)
$$\displaystyle\begin{array}{rcl} [\big\{a_{a}^{\dag }a_{ b}\big\},\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}\big\}]& =& \left (1 -\hat{P}_{kl}\right )\delta _{bk}\big\{a_{a}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}\big\} -\left (1 -\hat{P}_{mn}\right )\delta _{am}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ n}a_{b}\big\} \\ & & +\left (1 -\hat{P}_{kl}\right )\left (1 -\hat{P}_{mn}\right )(n_{a} - n_{b})\delta _{an}\delta _{bl}\big\{a_{k}^{\dag }a_{ m}\big\} {}\end{array}$$
(10.249)
$$\displaystyle\begin{array}{rcl} & & [\big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ d}a_{c}\big\},\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}\big\}] \\ & & \quad = \left (1 -\hat{P}_{ab}\right )\left (1 -\hat{P}_{mn}\right )\delta _{am}\big\{a_{b}^{\dag }a_{ k}^{\dag }a_{ l}^{\dag }a_{ n}a_{d}a_{c}\big\} \\ & & \qquad -\left (1 -\hat{P}_{cd}\right )\left (1 -\hat{P}_{kl}\right )\delta _{kc}\big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ l}^{\dag }a_{ n}a_{m}a_{d}\big\} \\ & & \qquad + (1 -\hat{P}_{cd})\left (\bar{n}_{c}\bar{n}_{d} - n_{c}n_{d}\right )\delta _{ck}\delta _{dl}\big\{a_{a}^{\dag }a_{ b}^{\dag }a_{ n}a_{m}\big\} \\ & & \qquad + (1 -\hat{P}_{ab})\left (n_{a}n_{b} -\bar{n}_{a}\bar{n}_{b}\right )\delta _{am}\delta _{bn}\big\{a_{k}^{\dag }a_{ l}^{\dag }a_{ d}a_{c}\big\} \\ & & \qquad + (1 -\hat{P}_{ab})(1 -\hat{P}_{cd})(1 -\hat{P}_{kl})(1 -\hat{P}_{mn})\left (n_{b} - n_{d}\right )\delta _{bn}\delta _{dl}\big\{a_{a}^{\dag }a_{ k}^{\dag }a_{ m}a_{c}\big\} \\ & & \qquad + (1 -\hat{P}_{ab})(1 -\hat{P}_{mn})\left (n_{b}\bar{n}_{c}\bar{n}_{d} -\bar{n}_{b}n_{c}n_{d}\right )\delta _{bn}\delta _{ck}\delta _{dl}\big\{a_{a}^{\dag }a_{ m}\big\} \\ & & \qquad - (1 -\hat{P}_{cd})(1 -\hat{P}_{kl})\left (n_{d}\bar{n}_{a}\bar{n}_{b} -\bar{n}_{d}n_{a}n_{b}\right )\delta _{dl}\delta _{am}\delta _{bn}\big\{a_{k}^{\dag }a_{ c}\big\} \\ & & \qquad + (1 -\hat{P}_{ab})(1 -\hat{P}_{cd})\left (n_{a}n_{b}\bar{n}_{c}\bar{n}_{d} -\bar{n}_{a}\bar{n}_{b}n_{c}n_{d}\right )\delta _{am}\delta _{bn}\delta _{ck}\delta _{dl} {}\end{array}$$
(10.250)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hergert, H. et al. (2017). In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem. In: Hjorth-Jensen, M., Lombardo, M., van Kolck, U. (eds) An Advanced Course in Computational Nuclear Physics. Lecture Notes in Physics, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-53336-0_10

Download citation

Publish with us

Policies and ethics