Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 96))

  • 658 Accesses

Abstract

In this chapter, important mathematical preliminaries, required in future chapters are presented, including stability definitions, some neural networks models, the extended Kalman filter learning algorithm and optimal control introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function l(z) is positive semidefinite (or nonnegative definite) function if for all vectors z, \(l(z)\ge 0\). In other words, there are vectors z for which \(l(z) = 0\), and for all others z, \(l(z)\ge 0\) [9].

  2. 2.

    A real symmetric matrix R is positive definite if \(z^{\top } R z > 0\) for all \(z \ne 0\) [9].

References

  1. Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M.: Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(4), 943–949 (2008)

    Article  Google Scholar 

  2. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic Press, New York (1995)

    MATH  Google Scholar 

  3. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. (MCSS) 2(4), 304–314 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Feldkamp, L.A., Prokhorov, D.V., Feldkamp, T.M.: Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks. Neural Netw. 16(5), 683–689 (2003)

    Article  Google Scholar 

  5. Ge, S.S., Zhang, J., Lee, T.H.: Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(4), 1630–1645 (2004)

    Article  Google Scholar 

  6. Grover, R., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering. Wiley, New York (1992)

    MATH  Google Scholar 

  7. Haddad, W.M., Chellaboina, V.-S., Fausz, J.L., Abdallah, C.: Identification and control of dynamical systems using neural networks. J. Frankl. Inst. 335(5), 827–839 (1998)

    Article  MATH  Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems. Prentice Hall Inc., New Jersey (1996)

    Google Scholar 

  9. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publications Inc., New Jersey (2004)

    Google Scholar 

  10. Leung, C.-S., Chan, L.-W.: Dual extended Kalman filtering in recurrent neural networks. Neural Netw. 16(2), 223–239 (2003)

    Article  Google Scholar 

  11. Lewis, F.L., Syrmos, V.L.: Optimal Control. Wiley, New York (1995)

    Google Scholar 

  12. Lin, W., Byrnes, C.I.: Design of discrete-time nonlinear control systems via smooth feedback. IEEE Trans. Autom. Control 39(11), 2340–2346 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Z., Saberi, A.: Robust semi-global stabilization of minimum-phase input-output linearizable systems via partial state and output feedback. In: Proceedings of the American Control Conference, pp. 959–963. Baltimore, MD, USA (1994)

    Google Scholar 

  14. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  15. Ohsawa, T., Bloch, A.M., Leok, M.: Discrete Hamilton-Jacobi theory and discrete optimal control. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 5438–5443. Atlanta, GA, USA (2010)

    Google Scholar 

  16. Rovithakis, G.A., Christodoulou, M.A.: Adaptive Control with Recurrent High-Order Neural Networks. Springer, Berlin (2000)

    Book  Google Scholar 

  17. Rugh, W.J.: Linear System Theory. Prentice Hall Inc., New Jersey (1996)

    MATH  Google Scholar 

  18. Sanchez, E.N., Alanis, A.Y., Loukianov, A.G.: Discrete-Time High Order Neural Control: Trained with Kalman Filtering. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  19. Sanchez, E.N., Ornelas-Tellez, F.: Discrete-Time Inverse Optimal Control for Nonlinear Systems. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  20. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer, London (1997)

    Book  MATH  Google Scholar 

  21. Song, Y.D., Zhao, S. Liao, X.H., Zhang, R.: Memory-based control of nonlinear dynamic systems part II- applications. In: Proceedings of the 2006 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1–6, Singapore (2006)

    Google Scholar 

  22. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Garcia-Hernandez .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Hernandez, R., Lopez-Franco, M., Sanchez, E.N., Alanis, A.Y., Ruz-Hernandez, J.A. (2017). Foundations. In: Decentralized Neural Control: Application to Robotics. Studies in Systems, Decision and Control, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-53312-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53312-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53311-7

  • Online ISBN: 978-3-319-53312-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics