Skip to main content

The Human Leydig Cell

  • Chapter
  • First Online:
Book cover Male Hypogonadism

Part of the book series: Contemporary Endocrinology ((COE))

  • 1470 Accesses

Abstract

The Leydig cells are found in the interstitial compartment of the testis and are the major source of androgens in males. At least two populations of Leydig cells differentiate sequentially as the testis develops—a fetal population which regulates masculinization in utero and an adult population which develops before puberty and regulates adult fertility and sex drive. A third, neonatal population is also observed in the human which may represent re-activation of the fetal Leydig cells. The fetal Leydig cells in the human depend upon stimulation by chorionic gonadotropin and produce androgens through the canonical steroidogenic pathway and also, possibly, through an alternative “backdoor” pathway; both pathways apparently being required for normal fetal masculinization. Fetal Leydig cells also secrete insulin-like factor 3 (INSL3) which, along with androgen, induces testicular descent. The fetal Leydig cell population persists into adulthood in mice but becomes secondary to the adult population. Development of the adult Leydig cell population is dependent on the Sertoli cells and on luteinizing hormone (LH) from the pituitary. The adult cells in humans secrete mainly testosterone synthesized through the Δ5 canonical pathway, and cell activity is dependent on LH and the bone-derived hormone osteocalcin while the Sertoli cells, through unknown factors, act to maintain Leydig cell numbers. During aging in humans, there is a reduction in Leydig cell activity and, possibly, Leydig cell numbers. Leydig cell tumors are rare but will lead to precocious puberty when they occur in prepubertal boys. In about half of cases these tumors are associated with activating mutations in the steroidogenic machinery [e.g., the luteinizing hormone/choriogonadotropin receptor (LHCGR)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Traish AM, Zitzmann M. The complex and multifactorial relationship between testosterone deficiency (TD), obesity and vascular disease. Rev Endocr Metab Disord. 2015;16:249–68. doi:10.1007/s11154-015-9323-2.

    Article  CAS  PubMed  Google Scholar 

  2. Christensen A. A history of Leydig cell research. In: Payne AH, Hardy MP, editors. The Leydig cell in health and disease. Totowa: Humana Press; 2007. p. 3–30.

    Chapter  Google Scholar 

  3. Teerds KJ, Huhtaniemi IT Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update 2015;21:310–28. doi:10.1093/humupd/dmv008 dmv008 [pii].

  4. Shima Y, Matsuzaki S, Miyabayashi K, Otake H, Baba T, Kato S, Huhtaniemi I, Morohashi K. Fetal Leydig cells persist as an androgen-independent subpopulation in the postnatal testis. Mol Endocrinol. 2015;29:1581–93. doi:10.1210/me.2015-1200.

    Article  CAS  PubMed  Google Scholar 

  5. Forest MG, De Peretti E, Bertrand J. Hypothalamic-pituitarygonadal relationships in man from birth to puberty. Clin Endocrinol (Oxf). 1976;5:551–69.

    Article  CAS  Google Scholar 

  6. Prince FP. The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol. 2001;168:213–6.

    Article  CAS  PubMed  Google Scholar 

  7. O’Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, Fowler PA. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocrinol Metab. 2007;92:4792–801.

    Article  PubMed  CAS  Google Scholar 

  8. Fowler PA, Bhattacharya S, Gromoll J, Monteiro A, O’Shaughnessy PJ. Maternal smoking and developmental changes in luteinizing hormone (LH) and the LH receptor in the fetal testis. J Clin Endocrinol Metab. 2009;94:4688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winter JS, Hughes IA, Reyes FI, Faiman C. Pituitary-gonadal relations in infancy: 2. Patterns of serum gonadal steroid concentrations in man from birth to two years of age. J Clin Endocrinol Metab. 1976;42:679–86.

    Article  CAS  PubMed  Google Scholar 

  10. Winter JS, Faiman C, Hobson WC, Prasad AV, Reyes FI. Pituitary-gonadal relations in infancy. I. Patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee. J Clin Endocrinol Metab. 1975;40:545–51.

    Article  CAS  PubMed  Google Scholar 

  11. Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, Andersson AM, Toppari J Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab 2007;92:4020–027. doi:10.1210/jc.2007-0974 jc.2007-0974 [pii].

  12. Kuiri-Hanninen T, Sankilampi U, Dunkel L Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr 2014;82:73–80. doi:10.1159/000362414 000362414 [pii].

  13. Nistal M, Paniagua R, Regadera J, Santamaria L, Amat P. A quantitative morphological-study of human Leydig-cells from birth to adulthood. Cell Tissue Res. 1986;246:229–36.

    Article  CAS  PubMed  Google Scholar 

  14. Carlstrom K, Eriksson A, Stege R, Rannevik G. Relationship between serum testosterone and sex hormone-binding globulin in adult men with intact or absent gonadal function. Int J Androl. 1990;13:67–73.

    Article  CAS  PubMed  Google Scholar 

  15. Gondos B. Development and differentiation of the testis and male reproductive tract. In: Steinberger A, Steinberger B, editors. Testicular development, structure and function. New York: Raven Press; 1980. p. 3–20.

    Google Scholar 

  16. Voutilainen R. Differentiation of the fetal gonad. Horm Res. 1992;38(Suppl 2):66–71.

    Article  CAS  PubMed  Google Scholar 

  17. DeFalco T, Takahashi S, Capel B Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 2011;352:14–26. doi:10.1016/j.ydbio.2011.01.011 S0012-1606(11)00027-3 [pii].

  18. O’Shaughnessy PJ. Testicular development. In: Plant Tony, Zeleznik Anthony, editors. Knobil and Neill’s physiology of reproduction. Amsterdam: Academic Press; 2015. p. 567–94.

    Google Scholar 

  19. Tapanainen J, Kellokumpulehtinen P, Pelliniemi L, Huhtaniemi I. Age-related-changes in endogenous steroids of human-fetal testis during early and mid-pregnancy. J Clin Endocrinol Metab. 1981;52:98–102.

    Article  CAS  PubMed  Google Scholar 

  20. Clements JA, Reyes FI, Winter JS, Faiman C. Studies on human sexual development. III. Fetal pituitary and serum, and amniotic fluid concentrations of LH, CG, and FSH. J Clin Endocrinol Metab. 1976;42:9–19.

    Article  CAS  PubMed  Google Scholar 

  21. Fowler PA, Evans LW, Groome NP, Templeton A, Knight PG. A longitudinal study of maternal serum inhibin-A, inhibin-B, activin-A, activin-AB, pro-α C and follistatin during pregnancy. Hum Reprod. 1998;13:3530–6.

    Article  CAS  PubMed  Google Scholar 

  22. O’Shaughnessy P, Fowler PA. Endocrinology of the mammalian fetal testis. Reproduction. 2011;141:37–46.

    Article  PubMed  CAS  Google Scholar 

  23. Huhtaniemi I, Pelliniemi LJ. Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med. 1992;201:125–40.

    Article  CAS  PubMed  Google Scholar 

  24. Pelliniemi LJ, Niei M. Fine structure of the human foetal testis. I. The interstitial tissue. Z Zellforsch Mikrosk Anat. 1969;99:507–22.

    Article  CAS  PubMed  Google Scholar 

  25. Chemes H, Cigorraga S, Bergada C, Schteingart H, Rey R, Pellizzari E. Isolation of human leydig-cell mesenchymal precursors from patients with the androgen insensitivity syndrome—testosterone production and response to human chorionic-gonadotropin stimulation in culture. Biol Reprod. 1992;46:793–801.

    Article  CAS  PubMed  Google Scholar 

  26. Prince FP. Ultrastructure of immature leydig-cells in the human prepubertal testis. Anat Rec. 1984;209:165–76.

    Article  CAS  PubMed  Google Scholar 

  27. Chemes HE, Gottlieb SE, Pasqualini T, Domenichini E, Rivarola MA, Bergada C. Response to acute hCG stimulation and steroidogenic potential of Leydig cell fibroblastic precursors in humans. J Androl. 1985;6:102–12.

    Article  CAS  PubMed  Google Scholar 

  28. de Kretser D, Kerr JB. The cytology of the testis. In: Ernst K, Neil JD, editors. The physiology of reproduction. New York: Raven Press; 1994. p. 1177–290.

    Google Scholar 

  29. Luu-The V Assessment of steroidogenesis and steroidogenic enzyme functions. J Steroid Biochem Mol Biol 2013;137:176–82. doi:10.1016/j.jsbmb.2013.05.017 S0960-0760(13)00112-X [pii].

  30. Payne AH, O’Shaughnessy PJ. Structure, function and regulation of steroidogenic enzymes in the Leydig cell. In: Payne AH, Hardy MP, Russell LD, editors. The Leydig cell. Vienna, USA: Cache River Press; 1996. p. 259–85.

    Google Scholar 

  31. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi KI Contribution of Leydig and Sertoli Cells to testosterone production in mouse fetal testes. Mol Endocrinol 2012;27:63–73. doi:10.1210/me.2012-1256me.2012-1256 [pii].

  32. O’Shaughnessy PJ, Baker PJ, Heikkila M, Vainio S, McMahon AP. Localization of 17b-hydroxysteroid dehydrogenase/17-ketosteroid reductase isoform expression in the developing mouse testis—androstenedione is the major androgen secreted by fetal/neonatal leydig cells. Endocrinology. 2000;141:2631–7.

    Article  Google Scholar 

  33. Wilson JD, George FW, Griffin JE. The hormonal-control of sexual development. Science. 1981;211:1278–84.

    Article  CAS  PubMed  Google Scholar 

  34. Fluck CE, Meyer-Boni M, Pandey AV, Kempna P, Miller WL, Schoenle EJ, Biason-Lauber A Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet 2011;89:201–18. doi:10.1016/j.ajhg.2011.06.009 S0002-9297(11)00262-X [pii].

  35. Papadopoulos V, Miller WL Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab 2012;26:771–90. doi:10.1016/j.beem.2012.05.002 S1521-690X(12)00063-2 [pii].

  36. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17:221–44.

    CAS  PubMed  Google Scholar 

  37. Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 2015;408:90–8. doi:10.1016/j.mce.2015.03.014 S0303-7207(15)00145-8 [pii].

  38. Burstein S, Gut M Intermediates in the conversion of cholesterol to pregnenolone: kinetics and mechanism. Steroids 1976;28:115–31. 0039-128X(76)90131-8 [pii].

    Google Scholar 

  39. Biason-Lauber A, Miller WL, Pandey AV, Fluck CE of marsupials and men: “Backdoor” dihydrotestosterone synthesis in male sexual differentiation. Mol Cell Endocrinol 2013;371:124–32. doi:10.1016/j.mce.2013.01.017 S0303-7207(13)00040-3 [pii].

  40. Brock BJ, Waterman MR. Biochemical differences between rat and human cytochrome P450c17 support the different steroidogenic needs of these two species. Biochemistry. 1999;38:1598–606. doi:10.1021/bi9821059 [doi];bi9821059 [pii].

    Article  CAS  PubMed  Google Scholar 

  41. Thomas JL, Bose HS Regulation of human 3-beta-hydroxysteroid dehydrogenase type-2 (3betaHSD2) by molecular chaperones and the mitochondrial environment affects steroidogenesis. J Steroid Biochem Mol Biol 2015;151:74–84. doi:10.1016/j.jsbmb.2014.11.018 S0960-0760(14)00283-0 [pii].

  42. Dupont E, Zhao HF, Rheaume E, Simard J, Luuthe V, Labrie F, Pelletier G. Localization of 3b-hydroxysteroid dehydrogenase D5-D4-isomerase in rat gonads and adrenal glands by immunocytochemistry and in situ hybridization. Endocrinology. 1990;127:1394–403.

    Article  CAS  PubMed  Google Scholar 

  43. Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocr Rev. 2005.

    Google Scholar 

  44. Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol 2012;212:27–40. doi:10.1530/JOE-11-0315 JOE-11-0315 [pii].

  45. Boehmer AL, Brinkmann AO, Sandkuijl LA, Halley DJ, Niermeijer MF, Andersson S, de Jong FH, Kayserili H, de Vroede MA, Otten BJ, Rouwe CW, Mendonca BB, Rodrigues C, Bode HH, de Ruiter PE, Delemarre-van de Waal HA, Drop SL. 17β-hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations. J Clin Endocrinol Metab. 1999;84:4713–21. doi:10.1210/jcem.84.12.6174.

    CAS  PubMed  Google Scholar 

  46. Werner R, Kulle A, Sommerfeld I, Riepe FG, Wudy S, Hartmann MF, Merz H, Dohnert U, Bertelloni S, Holterhus PM, Hiort O Testosterone synthesis in patients with 17β-hydroxysteroid dehydrogenase 3 deficiency. Sex Dev 2012;6:161–68. doi:10.1159/000336605 000336605 [pii].

  47. Mendonca BB, Arnhold IJP, Domenice S, Costa EMF 46,XY Disorders of Sexual Development. NBK279170 2000 [bookaccession].

    Google Scholar 

  48. Wilson JD, Auchus RJ, Leihy MW, Guryev OL, Estabrook RW, Osborn SM, Shaw G, Renfree MB. 5α-androstane-3α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate. Endocrinology. 2003;144:575–80.

    Article  CAS  PubMed  Google Scholar 

  49. Mahendroo M, Wilson JD, Richardson JA, Auchus RJ. Steroid 5α-reductase 1 promotes 5α-androstane-3α,17β-diol synthesis in immature mouse testes by two pathways. Mol Cell Endocrinol. 2004;222:113–20. doi:10.1016/j.mce.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  50. Siiteri PK, Wilson JD. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J Clin Endocrinol Metab. 1974;38:113–25. doi:10.1210/jcem-38-1-113.

    Article  CAS  PubMed  Google Scholar 

  51. George FW, Carr BR, Noble JF, Wilson JD. 5-α-reduced androgens in the human-fetal testis. J Clin Endocrinol Metab. 1987;64:628–30.

    Article  CAS  PubMed  Google Scholar 

  52. O’Shaughnessy PJ, Monteiro A, Bhattacharya S, Fraser MJ, Fowler PA Steroidogenic enzyme expression in the human fetal liver and potential role in the endocrinology of pregnancy. Mol Hum Reprod 2013;19:177–87. doi:10.1093/molehr/gas059 gas059 [pii].

  53. Carreau S, Bouraima-Lelong H, Delalande C Estrogen, a female hormone involved in spermatogenesis. Adv Med Sci 2012;57: 31–6. doi:10.2478/v10039-012-0005-y D8734766262701R4 [pii].

  54. Majumdar SS, Winters SJ, Plant TM. Procedures for the isolation and culture of Sertoli cells from the testes of infant, juvenile, and adult rhesus monkeys (Macaca mulatta). Biol Reprod. 1998;58:633–40.

    Article  CAS  PubMed  Google Scholar 

  55. Inkster S, Yue W, Brodie A. Human testicular aromatase: immunocytochemical and biochemical studies. J Clin Endocrinol Metab. 1995;80:1941–7. doi:10.1210/jcem.80.6.7539819.

    CAS  PubMed  Google Scholar 

  56. Carreau S. Leydig cell aromatase. In: Payne AH, Hardy MP, editors. The Leydig cell in health and disease. Totowa: Humana; 2007. p. 189–95.

    Chapter  Google Scholar 

  57. Winters SJ, Takahashi J, Troen P. Secretion of testosterone and its delta4 precursor steroids into spermatic vein blood in men with varicocele-associated infertility. J Clin Endocrinol Metab. 1999;84:997–1001. doi:10.1210/jcem.84.3.5548.

    CAS  PubMed  Google Scholar 

  58. Tuttelmann F, Damm OS, Luetjens CM, Baldi M, Zitzmann M, Kliesch S, Nieschlag E, Gromoll J, Wistuba J, Simoni M. Intratesticular testosterone is increased in men with Klinefelter syndrome and may not be released into the bloodstream owing to altered testicular vascularization-a preliminary report. Andrology. 2014;2:275–81. doi:10.1111/j.2047-2927.2014.00190.x.

    Article  CAS  PubMed  Google Scholar 

  59. Virtanen HE, Toppari J. Embryology and physiology of testicular development and descent. Pediatr Endocrinol Rev. 2014;11(Suppl 2):206–13.

    PubMed  Google Scholar 

  60. Bay K, Cohen AS, Jorgensen FS, Jorgensen C, Lind AM, Skakkebaek NE, Andersson AM. Insulin-like factor 3 levels in second-trimester amniotic fluid. J Clin Endocrinol Metab. 2008;93:4048–51.

    Article  CAS  PubMed  Google Scholar 

  61. Ivell R, Heng K, Anand-Ivell R. Insulin-Like Factor 3 and the HPG Axis in the Male. Front Endocrinol (Lausanne). 2014;5:6. doi:10.3389/fendo.2014.00006.

    Google Scholar 

  62. O’Shaughnessy PJ, Monteiro A, Fowler PA, Morris ID Identification of Leydig cell-specific mRNA transcripts in the adult rat testis. Reproduction 2014;147:671–82. doi:10.1530/REP-13-0603 REP-13-0603 [pii].

  63. Zhang YF, Yuan KM, Liang Y, Chu YH, Lian QQ, Ge YF, Zhen W, Sottas CM, Su ZJ, Ge RS Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment. Asian J Androl 2015;17:253–60. doi:10.4103/1008-682X.136447 136447 [pii].

  64. Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod. 2000;63:1825–38.

    Article  CAS  PubMed  Google Scholar 

  65. Pierucci-Alves F, Clark AM, Russell LD. A developmental study of the desert hedgehog-null mouse testis. Biol Reprod. 2001;65:1392–402.

    Article  CAS  PubMed  Google Scholar 

  66. Yao HH, Whoriskey W, Capel B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 2002;16:1433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Umehara F, Tate G, Itoh K, Yamaguchi N, Douchi T, Mitsuya T, Osame M A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet 2000;67:1302–305. doi:10.1016/S0002-9297(07)62958-9 S0002-9297(07)62958-9 [pii].

  68. Canto P, Soderlund D, Reyes E, Mendez JP. Mutations in the desert hedgehog (DHH) gene in patients with 46, XY complete pure gonadal dysgenesis. J Clin Endocrinol Metab. 2004;89:4480–3.

    Article  CAS  PubMed  Google Scholar 

  69. Brennan J, Tilmann C, Capel B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 2003;17:800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397:405–9.

    Article  CAS  PubMed  Google Scholar 

  71. Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 2008;135:3745–753. doi:10.1242/dev.024786 dev.024786 [pii].

  72. Wen Q, Zheng QS, Li XX, Hu ZY, Gao F, Cheng CY, Liu YX Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. Am J Physiol Endocrinol Metab 2014;307:E1131-143. doi:10.1152/ajpendo.00425.2014 ajpendo.00425.2014 [pii].

  73. Zhang L, Chen M, Wen Q, Li Y, Wang Y, Wang Y, Qin Y, Cui X, Yang L, Huff V, Gao F Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1 ablation. Proc Natl Acad Sci U S A 2015;112:4003–008. doi:10.1073/pnas.1422371112 1422371112 [pii].

  74. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002;32:359–69.

    Article  CAS  PubMed  Google Scholar 

  75. Miyabayashi K, Katoh-Fukui Y, Ogawa H, Baba T, Shima Y, Sugiyama N, Kitamura K, Morohashi K. Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells. PLoS ONE. 2013;8:e68050. doi:10.1371/journal.pone.0068050 PONE-D-13-03678 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. O’Shaughnessy PJ, Baker P, Sohnius U, Haavisto A-M, Charlton HM, Huhtaniemi I. Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology. 1998;139:1141–6.

    Article  PubMed  Google Scholar 

  77. Zhang F-P, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol. 2001;15:172–83.

    Article  CAS  PubMed  Google Scholar 

  78. Rebourcet D, O’Shaughnessy PJ, Pitetti JL, Monteiro A, O’Hara L, Milne L, Tsai YT, Cruickshanks L, Riethmacher D, Guillou F, Mitchell RT, van’t Hof R, Freeman TC, Nef S, Smith LB Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 2014;141:2139–149. doi:10.1242/dev.107029 141/10/2139 [pii].

  79. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the b-subunit of luteinizing hormone. N Eng J Med. 1992;326:179–83.

    Article  CAS  Google Scholar 

  80. Kremer H, Kraaij R, Toledo SPA, Post M, Fridman JB, Hayashida CY, van Reen M, Milgrom E, Ropers HH, Mariman E, Themmen APN, Brunner HG. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet. 1995;9:160–4.

    Article  CAS  PubMed  Google Scholar 

  81. Ariyaratne HB, Mendis-Handagama SM, Hales DB, Mason JI. Studies of the onset of Leydig precursor cell differentiation in the prepubertal rat testis. Biol Reprod. 2000;63:165–71.

    Article  CAS  Google Scholar 

  82. Landreh L, Stukenborg JB, Soder O, Svechnikov K Phenotype and steroidogenic potential of PDGFRα-positive rat neonatal peritubular cells. Mol Cell Endocrinol 2013;372:96–104. doi:10.1016/j.mce.2013.03.019 S0303-7207(13)00115-9 [pii].

  83. O’Shaughnessy PJ, Morris ID, Baker PJ. Leydig cell re-generation and expression of cell signaling molecules in the germ cell-free testis. Reproduction. 2008;135:851–8.

    Article  PubMed  CAS  Google Scholar 

  84. Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, Hardy MP In search of rat stem Leydig cells: Identification, isolation, and lineage-specific development. Proc Natl Acad Sci U S A. 2006.

    Google Scholar 

  85. Hardy MP, Zirkin BR, Ewing LL. Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology. 1989;124:762–70.

    Article  CAS  PubMed  Google Scholar 

  86. Park SY, Tong M, Jameson JL Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development. Endocrinology 2007.

    Google Scholar 

  87. Li X, Wang Z, Jiang Z, Guo J, Zhang Y, Li C, Chung J, Folmer J, Liu J, Lian Q, Ge R, Zirkin BR, Chen H Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proc Natl Acad Sci U S A. 2016 doi:10.1073/pnas.1519395113 1519395113 [pii].

  88. Racine C, Rey R, Forest MG, Louis F, Ferre A, Huhtaniemi I, Josso N, di Clemente N. Receptors for anti-mullerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Proc Natl Acad Sci U S A. 1995;95:594–9.

    Article  Google Scholar 

  89. Qin J, Tsai MJ, Tsai SY. Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS ONE. 2008;3:e3285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, Bondjers C, Karlsson L, Betsholtz C. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol. 2000;149:1019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmahl J, Rizzolo K, Soriano P The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev 2008;22:3255–267. doi:10.1101/gad.1723908 22/23/3255 [pii].

  92. Basciani S, Mariani S, Spera G, Gnessi L Role of platelet-derived growth factors in the testis. Endocr Rev 2010;31:916–39. doi:10.1210/er.2010-0004 er.2010-0004 [pii].

  93. Gnessi L, Emidi A, Jannini EA, Carosa E, Maroder M, Arizzi M, Ulisse S, Spera G. Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J Cell Biol. 1995;131:1105–21.

    Article  CAS  PubMed  Google Scholar 

  94. Mendis-Handagama SM, Ariyaratne HB. Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod. 2001;65:660–71.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang FP, Pakarainen T, Zhu F, Poutanen M, Huhtaniemi I. Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology. 2004;145:1453–63.

    Article  CAS  PubMed  Google Scholar 

  96. Baker PJ, Johnston H, Abel MH, Charlton HM, O’Shaughnessy PJ. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice. Reprod Biol Endocrinol. 2003;1:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Baker PJ, O’Shaughnessy PJ. Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction. 2001;122:227–34.

    Article  CAS  PubMed  Google Scholar 

  98. McGee SR, Narayan P Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene. Endocrinology 2013;154:3900–913. doi:10.1210/en.2012-2179 en.2012-2179 [pii].

  99. O’Shaughnessy PJ, Johnston H, Willerton L, Baker PJ. Failure of normal adult Leydig cell development in androgen-receptor-deficient mice. J Cell Sci. 2002;115:3491–6.

    PubMed  Google Scholar 

  100. De Gendt K, Atanassova N, Tan KA, De Franca LR, Parreira GG, McKinnell C, Sharpe RM, Saunders PT, Mason J, Hartung S, Ivell R, Denolet E, Verhoeven G. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective (SCARKO) or total (ARKO) ablation of the androgen receptor. Endocrinology. 2005;146:4117–26.

    Article  PubMed  CAS  Google Scholar 

  101. O’Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-Hilczer J, Kula K, Szarras-Czapnik M, Milne L, Mitchell RT, Smith LB Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J 2015;29:894–910. doi:10.1096/fj.14-255729 fj.14-255729 [pii].

  102. Boyar RM, Moore RJ, Rosner W, Aiman J, Chipman J, Madden JD, Marks JF, Griffin JE. Studies of gonadotropin-gonadal dynamics in patients with androgen insensitivity. J Clin Endocrinol Metab. 1978;47:1116–22. doi:10.1210/jcem-47-5-1116.

    Article  CAS  PubMed  Google Scholar 

  103. Judd HL, Hamilton CR, Barlow JJ, Yen SS, Kliman B. Androgen and gonadotropin dynamics in testicular feminization syndrome. J Clin Endocrinol Metab. 1972;34:229–34. doi:10.1210/jcem-34-1-229.

    Article  CAS  PubMed  Google Scholar 

  104. Nusynowitz ML, Strader WJ III. Regulation of gonadotropin response in testicular feminization syndrome. Am J Med Sci. 1975;270:491–6.

    Article  CAS  PubMed  Google Scholar 

  105. Tremblay RR, Foley TP Jr, Corvol P, Park IJ, Kowarski A, Blizzard RM, Jones HW Jr, Migeon CJ. Plasma concentration of testosterone, dihydrotestosterone, testosterone-oestradiol binding globulin, and pituitary gonadotrophins in the syndrome of male pseudo-hermaphroditism with testicular feminization. Acta Endocrinol (Copenh). 1972;70:331–41.

    CAS  Google Scholar 

  106. Murphy L, O’Shaughnessy PJ. Testicular steroidogenesis in the testicular feminized (Tfm) mouse: loss of 17a-hydroxylase activity. J Endocrinol. 1991;131:443–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wilson SC, Oakey RE, Scott JS. Steroid metabolism in testes of patients with incomplete masculinization due to androgen insensitivity or 17β-hydroxysteroid dehydrogenase deficiency and normally differentiated males. J Steroid Biochem. 1988;29:649–55.

    Article  CAS  PubMed  Google Scholar 

  108. Kilcoyne KR, Smith LB, Atanassova N, MacPherson S, McKinnell C, van den Driesche S, Jobling MS, Chambers TJ, De GK, Verhoeven G, O’Hara L, Platts S, Renato de FL, Lara NL, Anderson RA, Sharpe RM Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 2014;111:E1924-932. doi:10.1073/pnas.1320735111 1320735111 [pii].

  109. Eisenberg ML, Jensen TK, Walters RC, Skakkebaek NE, Lipshultz LI The relationship between anogenital distance and reproductive hormone levels in adult men. J Urol 2012;187:594–98. doi:10.1016/j.juro.2011.10.041 S0022-5347(11)05285-2 [pii].

  110. Smith LB, Walker WH. Hormone signalling in the testis. In: Plant TM, Zeleznick AJ, editors. Knobil and Neill’s physiology of reproduction. Amsterdam: Elsevier; 2015. p. 637–90.

    Google Scholar 

  111. Hansson V, Skalhegg BS, Tasken K Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA. J Steroid Biochem Mol Biol 2000;73:81–92. S0960-0760(00)00057-1 [pii].

    Google Scholar 

  112. Manna PR, Huhtaniemi IT, Stocco DM Mechanisms of protein kinase C signaling in the modulation of 3’,5’-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells. Endocrinology 2009;150:3308–317. doi:10.1210/en.2008-1668 en.2008-1668 [pii].

  113. Costa RR, Varanda WA, Franci CR A calcium-induced calcium release mechanism supports luteinizing hormone-induced testosterone secretion in mouse Leydig cells. Am J Physiol Cell Physiol 2010;299:C316-23. doi:10.1152/ajpcell.00521.2009 ajpcell.00521.2009 [pii].

  114. Abdou HS, Villeneuve G, Tremblay JJ The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 2013;154:511–20. doi:10.1210/en.2012-1767 en.2012-1767 [pii].

  115. Evaul K, Hammes SR Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. J Biol Chem 2008;283:27525–7533. doi:10.1074/jbc.M803867200 M803867200 [pii].

  116. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 2005;102:4459–464. doi:10.1073/pnas.0501076102 0501076102 [pii].

  117. Manna PR, Eubank DW, Lalli E, Sassone-Corsi P, Stocco DM. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol. 2003;30:381–97.

    Article  CAS  PubMed  Google Scholar 

  118. Scott IS, Charlton HM, Cox BS, Grocock CA, Sheffield JW, O’Shaughnessy PJ. Effect of LH injections on testicular steroidogenesis, cholesterol side-chain cleavage P450 messenger RNA content and leydig cell morphology in hypogonadal mice. J Endocrinol. 1990;125:131–8.

    Article  CAS  PubMed  Google Scholar 

  119. O’Shaughnessy PJ, Fleming LM, Jackson G, Hochgeschwender U, Reed P, Baker PJ. Adrenocoricotrophic hormone directly stimulates testosterone production by the fetal and neonatal mouse testis. Endocrinology. 2003;144:3279–84.

    Article  PubMed  CAS  Google Scholar 

  120. Johnston H, King PJ, O’Shaughnessy PJ. Effects of ACTH and expression of the melanocortin-2 receptor in the neonatal mouse testis. Reproduction. 2007;133:1181–7.

    Article  CAS  PubMed  Google Scholar 

  121. O’Shaughnessy PJ, Morris ID, Huhtaniemi I, Baker PJ, Abel MH. Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: Data from mutant and genetically modified mice. Mol Cell Endocrinol. 2009;306:2–8.

    Article  PubMed  CAS  Google Scholar 

  122. Hatano O, Takakusu A, Nomura M, Morohashi K. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells. 1996;1:663–71.

    Article  CAS  PubMed  Google Scholar 

  123. Hu L, Monteiro A, Johnston H, King P, O’Shaughnessy PJ. Expression of Cyp21a1 and Cyp11b1 in the fetal mouse testis. Reproduction. 2007;134:585–91.

    Article  CAS  PubMed  Google Scholar 

  124. O’Shaughnessy PJ, Baker PJ, Johnston H. The foetal Leydig cell—differentiation, function and regulation. Int J Androl. 2006;29:90–5.

    Article  PubMed  CAS  Google Scholar 

  125. Val P, Jeays-Ward K, Swain A. Identification of a novel population of adrenal-like cells in the mammalian testis. Dev Biol. 2006;299:250–6.

    Article  CAS  PubMed  Google Scholar 

  126. Claahsen-van der Grinten HL, Otten BJ, Stikkelbroeck MM, Sweep FC, Hermus AR Testicular adrenal rest tumours in congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009;23:209–20. doi:10.1016/j.beem.2008.09.007 S1521-690X(08)00105-X [pii].

  127. El Gehani F, Tena-Sempere M, Ruskoaho H, Huhtaniemi I. Natriuretic peptides stimulate steroidogenesis in the fetal rat testis. Biol Reprod. 2001;65:595–600.

    Article  PubMed  Google Scholar 

  128. El Gehani F, Tena-Sempere M, Huhtaniemi I. Evidence that pituitary adenylate cyclase-activating polypeptide is a potent regulator of fetal rat testicular steroidogenesis. Biol Reprod. 2000;63:1482–9.

    Article  PubMed  Google Scholar 

  129. El Gehani F, Tena-Sempere M, Huhtaniemi I. Vasoactive intestinal peptide stimulates testosterone production by cultured fetal rat testicular cells. Mol Cell Endocrinol. 1998;140:175–8.

    Article  PubMed  Google Scholar 

  130. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G Endocrine regulation of male fertility by the skeleton. Cell 2011;144: 796–809. doi:10.1016/j.cell.2011.02.004 S0092-8674(11)00118-8 [pii].

  131. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, Srinivas P, Chamouni A, Lugani F, Lejeune H, Kumar TR, Plotton I, Karsenty G Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013;123:2421–433. doi:10.1172/JCI65952 65952 [pii].

  132. Karsenty G, Oury F Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 2014;382:521–26. doi:10.1016/j.mce.2013.10.008 S0303-7207(13)00448-6 [pii].

  133. Chen YI, Payne AH, Kelch RP. FSH stimulation of Leydig cell function in the hypophysectomized immature rat. Proc Soc Exp Biol Med. 1976;153:473–5.

    Article  CAS  PubMed  Google Scholar 

  134. Lapolt PS, Tilly JL, Aihara T, Nishimori K, Hsueh AJW. Gonadotropin-induced up-regulation and down-regulation of ovarian follicle-stimulating-hormone (fsh) receptor gene- expression in immature rats—effects of pregnant mares serum gonadotropin, human chorionic-gonadotropin, and recombinant fsh. Endocrinology. 1992;130:1289–95.

    CAS  PubMed  Google Scholar 

  135. Sadate-Ngatchou PI, Pouchnik DJ, Griswold MD. Follicle-stimulating hormone induced changes in gene expression of murine testis. Mol Endocrinol. 2004;18:2805–16.

    Article  CAS  PubMed  Google Scholar 

  136. Baker PJ, Pakarinen P, Huhtaniemi IT, Abel MH, Charlton HM, Kumar TR, O’Shaughnessy PJ. Failure of normal leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHβ-deficient mice: role for constitutive FSH receptor activity. Endocrinology. 2003;144:138–45.

    Article  CAS  PubMed  Google Scholar 

  137. Abel M, Baban D, Lee S, Charlton H, O’Shaughnessy P. Effects of follicle stimulating hormone on testicular mRNA transcript levels in the hypogonadal mouse. J Mol Endocrinol. 2009;42:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Young J, Couzinet B, Chanson P, Brailly S, Loumaye E, Schaison G. Effects of human recombinant luteinizing hormone and follicle-stimulating hormone in patients with acquired hypogonadotropic hypogonadism: study of Sertoli and Leydig cell secretions and interactions. J Clin Endocrinol Metab. 2000;85:3239–44.

    Article  CAS  PubMed  Google Scholar 

  139. Lofrano-Porto A, Casulari LA, Nascimento PP, Giacomini L, Naves LA, da Motta LD, Layman LC. Effects of follicle-stimulating hormone and human chorionic gonadotropin on gonadal steroidogenesis in two siblings with a follicle-stimulating hormone beta subunit mutation. Fertil Steril. 2008;90:1169–74.

    Article  PubMed  Google Scholar 

  140. Levalle O, Zylbersztein C, Aszpis S, Aquilano D, Terradas C, Colombani M, Aranda C, Scaglia H. Recombinant human follicle-stimulating hormone administration increases testosterone production in men, possibly by a Sertoli cell-secreted nonsteroid factor. J Clin Endocrinol Metab. 1998;83:3973–6.

    Article  CAS  PubMed  Google Scholar 

  141. Heckert LL, Griswold MD. The expression of the follicle-stimulating hormone receptor in spermatogenesis. Recent Prog Horm Res. 2002;57:129–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rebourcet D, O’Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, Guillou F, Freeman TC, Mitchell RT, Smith LB. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS ONE. 2014;9:e105687. doi:10.1371/journal.pone.0105687 PONE-D-14-19027 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Huhtaniemi I Late-onset hypogonadism: current concepts and controversies of pathogenesis, diagnosis and treatment. Asian J Androl 2014;16:192–202. doi:10.4103/1008-682X.122336 122336 [pii].

  144. Travison TG, Araujo AB, Kupelian V, O’Donnell AB, McKinlay JB The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab 2007;92:549–55. doi:10.1210/jc.2006-1859 jc.2006-1859 [pii].

  145. Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab 2008;93: 2737–745. doi:10.1210/jc.2007-1972 jc.2007-1972 [pii].

  146. Tajar A, Forti G, O’Neill TW, Lee DM, Silman AJ, Finn JD, Bartfai G, Boonen S, Casanueva FF, Giwercman A, Han TS, Kula K, Labrie F, Lean ME, Pendleton N, Punab M, Vanderschueren D, Huhtaniemi IT, Wu FC Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Aging Study. J Clin Endocrinol Metab 2010;95:1810–818. doi:10.1210/jc.2009-1796 jc.2009-1796 [pii].

  147. Coviello AD, Lakshman K, Mazer NA, Bhasin S Differences in the apparent metabolic clearance rate of testosterone in young and older men with gonadotropin suppression receiving graded doses of testosterone. J Clin Endocrinol Metab 2006;91:4669–675. doi:10.1210/jc.2006-0822 jc.2006-0822 [pii].

  148. Veldhuis JD, Liu PY, Keenan DM, Takahashi PY Older men exhibit reduced efficacy of and heightened potency downregulation by intravenous pulses of recombinant human LH: a study in 92 healthy men. Am J Physiol Endocrinol Metab 2012;302: E117-22. doi:10.1152/ajpendo.00450.2011 ajpendo.00450.2011 [pii].

  149. Tenover JS, Matsumoto AM, Plymate SR, Bremner WJ. The effects of aging in normal men on bioavailable testosterone and luteinizing hormone secretion: response to clomiphene citrate. J Clin Endocrinol Metab. 1987;65:1118–26. doi:10.1210/jcem-65-6-1118.

    Article  CAS  PubMed  Google Scholar 

  150. Neaves WB, Johnson L, Porter JC, Parker CR Jr, Petty CS. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59:756–63. doi:10.1210/jcem-59-4-756.

    Article  CAS  PubMed  Google Scholar 

  151. Kaler LW, Neaves WB. Attrition of the human Leydig cell population with advancing age. Anat Rec. 1978;192:513–8. doi:10.1002/ar.1091920405.

    Article  CAS  PubMed  Google Scholar 

  152. Harbitz TB. Morphometric studies of the Leydig cells in elderly men with special reference to the histology of the prostate. An analysis in an autopsy series. Acta Pathol Microbiol Scand A. 1973;81:301–14.

    CAS  PubMed  Google Scholar 

  153. Paniagua R, Martin A, Nistal M, Amat P. Testicular involution in elderly men: comparison of histologic quantitative studies with hormone patterns. Fertil Steril. 1987;47:671–9.

    Article  CAS  PubMed  Google Scholar 

  154. Petersen PM, Seieroe K, Pakkenberg B. The total number of Leydig and Sertoli cells in the testes of men across various age groups—a stereological study. J Anat. 2015;226:175–9. doi:10.1111/joa.12261.

    Article  PubMed  Google Scholar 

  155. Paniagua R, Nistal M, Saez FJ, Fraile B. Ultrastructure of the aging human testis. J Electron Microsc Tech. 1991;19:241–60.

    Article  CAS  PubMed  Google Scholar 

  156. Nistal M, Santamaria L, Paniagua R, Regadera J, Codesal J. Multinucleate leydig-cells in normal human testes. Andrologia. 1986;18:268–72.

    Article  CAS  PubMed  Google Scholar 

  157. Mori H, Hiromoto N, Nakahara M, Shiraishi T. Stereological analysis of Leydig cell ultrastructure in aged humans. J Clin Endocrinol Metab. 1982;55:634–41. doi:10.1210/jcem-55-4-634.

    Article  CAS  PubMed  Google Scholar 

  158. Takahashi J, Higashi Y, LaNasa JA, Yoshida K, Winters SJ, Oshima H, Troen P. Studies of the human testis. XVIII. Simultaneous measurement of nine intratesticular steroids: evidence for reduced mitochondrial function in testis of elderly men. J Clin Endocrinol Metab. 1983;56:1178–87. doi:10.1210/jcem-56-6-1178.

    Article  CAS  PubMed  Google Scholar 

  159. Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR Leydig cell aging and hypogonadism. Exp Gerontol. 2015 doi:10.1016/j.exger.2015.02.014 S0531–5565(15)00076-5 [pii].

  160. Chen H, Guo J, Ge R, Lian Q, Papadopoulos V, Zirkin BR Steroidogenic fate of the Leydig cells that repopulate the testes of young and aged Brown Norway rats after elimination of the preexisting Leydig cells. Exp Gerontol 2015;72:8–15. doi:10.1016/j.exger.2015.08.014 S0531-5565(15)30038-3 [pii].

  161. Woodward PJ, Sohaey R, O’Donoghue MJ, Green DE. From the archives of the AFIP: tumors and tumorlike lesions of the testis: radiologic-pathologic correlation. Radiographics. 2002;22:189–216. doi:10.1148/radiographics.22.1.g02ja14189.

    Article  PubMed  Google Scholar 

  162. Kim I, Young RH, Scully RE. Leydig cell tumors of the testis. A clinicopathological analysis of 40 cases and review of the literature. Am J Surg Pathol. 1985;9:177–92.

    Article  CAS  PubMed  Google Scholar 

  163. Maizlin ZV, Belenky A, Kunichezky M, Sandbank J, Strauss S Leydig cell tumors of the testis: gray scale and color Doppler sonographic appearance. J Ultrasound Med 2004;23:959–64. 23/7/959 [pii].

    Google Scholar 

  164. Cortez JC, Kaplan GW. Gonadal stromal tumors, gonadoblastomas, epidermoid cysts, and secondary tumors of the testis in children. Urol Clin North Am. 1993;20:15–26.

    CAS  PubMed  Google Scholar 

  165. Al-Agha OM, Axiotis CA An in-depth look at Leydig cell tumor of the testis. Arch Pathol Lab Med 2007;131:311–17. doi:10.1043/1543-2165(2007)131[311:AILALC]2.0.CO;2 RS6-0240 [pii].

  166. Ducharme JR, Collu R. Pubertal development: normal, precocious and delayed. Clin Endocrinol Metab. 1982;11:57–87.

    Article  CAS  PubMed  Google Scholar 

  167. Leonhartsberger N, Ramoner R, Aigner F, Stoehr B, Pichler R, Zangerl F, Fritzer A, Steiner H. Increased incidence of Leydig cell tumours of the testis in the era of improved imaging techniques. BJU Int. 2011;108:1603–7. doi:10.1111/j.1464-410X.2011.10177.x.

    Article  PubMed  Google Scholar 

  168. Lock G, Schmidt C, Helmich F, Stolle E, Dieckmann KP Early experience with contrast-enhanced ultrasound in the diagnosis of testicular masses: a feasibility study. Urology 2011;77:1049–053. doi:10.1016/j.urology.2010.12.035 S0090-4295(10)02173-4 [pii].

  169. Richmond I, Banerjee SS, Eyden BP, Sissons MC. Sarcomatoid Leydig cell tumour of testis. Histopathology. 1995;27:578–80.

    Article  CAS  PubMed  Google Scholar 

  170. Ritchie JP. Neoplasms of the testis. In: Walsh P, Reitik A, Vaughan E, Wein A, editors. Campell’s Urology. Philadelphia: WB Saunders; 1992. p. 1222–63.

    Google Scholar 

  171. Bozzini G, Picozzi S, Gadda F, Colombo R, Decobelli O, Palou J, Colpi G, Carmignani L Long-term follow-up using testicle-sparing surgery for Leydig cell tumor. Clin Genitourin Cancer 2013;11:321–24. doi:10.1016/j.clgc.2012.12.008 S1558-7673(12)00247-9 [pii].

  172. Chandak P, Shah A, Taghizadeh A, Tiptaft R, Dasgupta P. Testis-sparing surgery for benign and malignant testicular tumours. Int J Clin Pract. 2003;57:912–3.

    CAS  PubMed  Google Scholar 

  173. Bertram KA, Bratloff B, Hodges GF, Davidson H. Treatment of malignant Leydig cell tumor. Cancer. 1991;68:2324–9.

    Article  CAS  PubMed  Google Scholar 

  174. Olivier P, Simoneau-Roy J, Francoeur D, Sartelet H, Parma J, Vassart G, Van VG Leydig cell tumors in children: contrasting clinical, hormonal, anatomical, and molecular characteristics in boys and girls. J Pediatr 2012;161:1147–52. doi:10.1016/j.jpeds.2012.05.039 S0022-3476(12)00556-2 [pii].

  175. Ahtiainen P, Rulli SB, Shariatmadari R, Pelliniemi LJ, Toppari J, Poutanen M, Huhtaniemi IT Fetal but not adult Leydig cells are susceptible to adenoma formation in response to persistently high hCG level: a study on hCG overexpressing transgenic mice. Oncogene 2005;24:7301–309. doi:10.1038/sj.onc.1208893 1208893 [pii].

  176. Makabe S, Naguro T, Heyn R, Motta PM. Ultrastructure of human Leydig cells at early gonadal embryogenesis. Ital J Anat Embryol. 1995;100(Suppl 1):525–33.

    PubMed  Google Scholar 

  177. Basciani S, Brama M, Mariani S, De LG, Arizzi M, Vesci L, Pisano C, Dolci S, Spera G, Gnessi L Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity. Cancer Res 2005;65:1897–903. doi:10.1158/0008-5472.CAN-04-2181 65/5/1897 [pii].

  178. Froehner M, Beuthien-Baumann B, Dittert DD, Schuler U, Wirth MP. Lack of efficacy of imatinib in a patient with metastatic Leydig cell tumor. Cancer Chemother Pharmacol. 2006;58:716–8. doi:10.1007/s00280-005-0181-6.

    Article  PubMed  Google Scholar 

  179. Naughton CK, Nadler RB, Basler JW, Humphrey PA. Leydig cell hyperplasia. Br J Urol. 1998;81:282–9.

    Article  CAS  PubMed  Google Scholar 

  180. Tash JA, McCallum S, Hardy MP, Knudsen B, Schlegel PN. Men with nonobstructive azoospermia have Leydig cell hypertrophy but not hyperplasia. J Urol. 2002;168:1068–70. doi:10.1097/01.ju.0000026414.68954.d1 S0022-5347(05)64576-4 [pii].

    Article  PubMed  Google Scholar 

  181. Habert R, Livera G, Rouiller-fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl. 2014;24:14. doi:10.1186/2051-4190-24-14 27 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  182. van den Driesche S, Walker M, McKinnell C, Scott HM, Eddie SL, Mitchell RT, Seckl JR, Drake AJ, Smith LB, Anderson RA, Sharpe RM. Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS ONE. 2012;7:e37064. doi:10.1371/journal.pone.0037064 PONE-D-12-03035 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Svechnikov K, Savchuk I, Morvan ML, Antignac JP, Le BB, Soder O Phthalates exert multiple effects on Leydig cell steroidogenesis. Horm Res Paediatr. 2015; 000440619 doi:10.1159/000440619.

  184. Desdoits-Lethimonier C, Albert O, Le BB, Perdu E, Zalko D, Courant F, Lesne L, Guille F, Dejucq-Rainsford N, Jegou B Human testis steroidogenesis is inhibited by phthalates. Hum Reprod 2012;27:1451–459. doi:10.1093/humrep/des069 des069 [pii].

  185. N’Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud’homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS ONE. 2012;7:e51579. doi:10.1371/journal.pone.0051579 PONE-D-12-19171 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Ben MM, Lesne L, Desdoits-Lethimonier C, Coiffec I, Lassurguere J, Lavoue V, Deceuninck Y, Antignac JP, Le BB, Perdu E, Zalko D, Pineau C, Chevrier C, Dejucq-Rainsford N, Mazaud-Guittot S, Jegou B. An investigation of the endocrine-disruptive effects of bisphenol a in human and rat fetal testes. PLoS ONE. 2015;10:e0117226. doi:10.1371/journal.pone.0117226 PONE-D-14-40771 [pii].

    Article  CAS  Google Scholar 

  187. Schooling CM, Au Yeung SL, Freeman G, Cowling BJ The effect of statins on testosterone in men and women, a systematic review and meta-analysis of randomized controlled trials. BMC Med 2013;11:57. doi:10.1186/1741-7015-11-57 1741–7015-11-57 [pii].

  188. Klinefelter GR, Laskey JW, Amann RP Statin drugs markedly inhibit testosterone production by rat Leydig cells in vitro: implications for men. Reprod Toxicol 2014;45:52–8. doi:10.1016/j.reprotox.2013.12.010 S0890-6238(14)00007-0 [pii].

  189. Beverly BE, Lambright CS, Furr JR, Sampson H, Wilson VS, McIntyre BS, Foster PM, Travlos G, Gray LE, Jr Simvastatin and dipentyl phthalate lower ex vivo testicular testosterone production and exhibit additive effects on testicular testosterone and gene expression via distinct mechanistic pathways in the fetal rat. Toxicol Sci 2014;141:524–37. doi:10.1093/toxsci/kfu149 kfu149 [pii].

  190. Van Thiel DH, Lester R, Sherins RJ. Hypogonadism in alcoholic liver disease: evidence for a double defect. Gastroenterology. 1974;67:1188–99.

    PubMed  Google Scholar 

  191. Maneesh M, Dutta S, Chakrabarti A, Vasudevan DM. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J Physiol Pharmacol. 2006;50:291–6.

    CAS  PubMed  Google Scholar 

  192. Santori C, Ceccanti M, Diacinti D, Attilia ML, Toppo L, D’Erasmo E, Romagnoli E, Mascia ML, Cipriani C, Prastaro A, Carnevale V, Minisola S Skeletal turnover, bone mineral density, and fractures in male chronic abusers of alcohol. J Endocrinol Invest 2008;31:321–26. doi:10.1007/BF03346365 4564 [pii].

  193. Muthusami KR, Chinnaswamy P Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril 2005;84:919–24. doi:10.1016/j.fertnstert.2005.04.025 S0015-0282(05)01251-3 [pii].

  194. Smith LB, O’Shaughnessy PJ, Rebourcet D. Cell-specific ablation in the testis: what have we learned? Andrology. 2015;3:1035–49. doi:10.1111/andr.12107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rodriguez A, Muller DC, Metter EJ, Maggio M, Harman SM, Blackman MR, Andres R. Aging, androgens, and the metabolic syndrome in a longitudinal study of aging. J Clin Endocrinol Metab. 2007;92:3568–72.

    Article  CAS  PubMed  Google Scholar 

  196. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93:68–75.

    Article  CAS  PubMed  Google Scholar 

  197. Saad F, Gooren LJ The role of testosterone in the etiology and treatment of obesity, the metabolic syndrome, and diabetes mellitus type 2. J Obes 2011.

    Google Scholar 

  198. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.

    Article  CAS  PubMed  Google Scholar 

  199. Vanbillemont G, Lapauw B, Bogaert V, De Naeyer H, De Bacquer D, Ruige J, Kaufman JM, Taes YE. Birth weight in relation to sex steroid status and body composition in young healthy male siblings. J Clin Endocrinol Metab. 2010;95:1587–94.

    Article  CAS  PubMed  Google Scholar 

  200. Prince FP Mitochondrial cristae diversity in human Leydig cells: a revised look at cristae morphology in these steroid-producing cells. Anat Rec 1999;254:534–41. 10.1002/(SICI)1097-0185(19990401)254:4<534::AID-AR8>3.0.CO;2-#.

Download references

Acknowledgements

Support from the BBSRC (BB/J015105) and MRC (MR/L01001) during the preparation of this manuscript is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. O’Shaughnessy BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

O’Shaughnessy, P.J. (2017). The Human Leydig Cell. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics