Skip to main content

Environmental Causes of Testicular Dysfunction

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Male reproductive disorders are remarkably common, and there is growing, if inconclusive, evidence that these may be caused by altered diet, lifestyle (smoking, alcohol, sedentation, recreational drugs, pharmaceutical drugs) or chemical exposures (e.g., pesticides and other endocrine-disrupting compounds). Such factors may cause their impact via effects during fetal development (i.e., maternal pregnancy effects) or in adulthood, or via a combination of the two. There is now strong evidence that a proportion of male reproductive disorders originate as a consequence of ‘testicular dysgenesis syndrome (TDS)’ which is thought to involve subtle deficiencies in fetal androgen production/action. However, what may cause TDS remains unclear. Although there is a widely held perception that environmental chemical exposures are an important cause of male reproductive disorders, evidence to this effect is equivocal, and it is argued that dietary and lifestyle changes are more likely to be important. There are considerable difficulties in studying how environmental effects can impact male reproductive health, especially where fetal origins are suspected, but readers are reminded to remain open to accepting such effects, bearing in mind that our reproductive processes have evolved so as to be in tune with (i.e., to reflect) our environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lincoln GA, Short RV. Seasonal breeding: Nature’s contraceptive. Rec Progr Horm Res. 1980;36:1–52.

    CAS  PubMed  Google Scholar 

  2. Lincoln GA, Rhind SM, Pompolo S, Clarke IJ. Hypothalamic control of photoperiod-induced cycles in food intake, body weight and metabolic hormones in rams. Am J Physiol Regul Integr Comp Physiol. 2001;281:R76–90.

    CAS  PubMed  Google Scholar 

  3. Sanchez-Garrido A, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav. 2013;64:187–94.

    Article  CAS  PubMed  Google Scholar 

  4. Skakkebaek NE, Rajpert-De Meyts E, Buck-Louis GM, Toppari J, Andersson A-M, Eisenberg ML, Jensen TK, Jorgensen N, Swan SH, Sapra KJ, Ziebe S, Priskhorn L, Juul A. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

    Article  CAS  PubMed  Google Scholar 

  5. Sharpe RM. Sperm counts and fertility in men: a rocky road ahead. EMBO Rep. 2012;13:398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skakkebaek NE, Rajpert-de Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  CAS  PubMed  Google Scholar 

  7. Welsh M, Saunders PTK, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118:1479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean A, Sharpe RM. Anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab. 2013;98:2230–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hauser R, Skakkebaek NE, Hass U, Toppari J, Juul A, Andersson A-M, Kortenkamp A, Heindel JJ, Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100:1267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119:878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, Becher G, Haug LS, Ernst EH, Toft G. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 2013;121:453–8.

    PubMed  PubMed Central  Google Scholar 

  12. Rojansky N, Brzezinski A, Schenker JG. Seasonality in human reproduction: an update. Hum Reprod. 1992;7:735–45.

    Article  CAS  PubMed  Google Scholar 

  13. Rojansky N, Benshushan A, Meisdorf S, Lewin A, Laufer N, Safran A. Seasonal variability in fertilization and embryo quality rates in women undergoing IVF. Fertil Steril. 2000;74:476–81.

    Article  CAS  PubMed  Google Scholar 

  14. Jorgensen N, Andersen A-G, Eustache F, Irvine DS, Suominen J, Petersen JH, Andersen AN, Auger J, Cawood EH, Horte A, Jensen TK, Jouannet P, Keiding N, Vierula M, Toppari J, Skakkebaek NE. Regional differences in semen quality in Europe. Hum Reprod. 2001;16:1012–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Godfrey-Bailey L, Schiff I, Hauser R. Impact of seasonal variation, age and smoking status on human semen parameters: the Massachusetts general hospital experience. J Exp Clin Assist Reprod. 2004;1:2. doi:10.1186/1743-1050-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang X-Z, Liu J-H, Sheng H-Q, Wu H-J, Wu Y, Yao K-S, Lu J-C, Zhang F-B. Seasonal variation in semen quality in China. Andrology. 2013;1:639–43.

    Article  PubMed  Google Scholar 

  17. Chia SE, Lim ST, Ho LM, Tay SK. Monthly variation in human semen quality in male partners of infertile women in the tropics. Hum Reprod. 2001;16:277–81.

    Article  CAS  PubMed  Google Scholar 

  18. Luboshitzky R, Wagner O, Lavi S, Here P, Lavie P. Abnormal melatonin secretion in hypogonadal men: the effect of testosterone treatment. Clin Endocrinol. 1997;47:463–9.

    Article  CAS  Google Scholar 

  19. Kumanov P, Tomova A, Isidori A, Nordio M. Altered melatonin in hypogonadal men: clinical evidence. Int J Androl. 2005;28:234–40.

    Article  CAS  PubMed  Google Scholar 

  20. Smith RP, Coward RM, Kovac JR, Lipshultz LI. The evidence for seasonal variations of testosterone in men. Maturitas. 2013;74:208–12.

    Article  CAS  PubMed  Google Scholar 

  21. Henderson J, Rennie GC, Baker HWG. Association between occupational group and sperm concentration in infertile men. Clin Reprod Fertil. 1986;4:275–81.

    CAS  PubMed  Google Scholar 

  22. Kenkel S, Rolf C, Nieschlag E. Occupational risks for male fertility: an analysis of patients attending a tertiary referral centre. Int J Androl. 2001;24:318–26.

    Article  CAS  PubMed  Google Scholar 

  23. Cherry N, Moore H, McNamee R, Pacey A, Burgess G, Clyma J-A, Dippnall M, Baillie H, Povey A. Participating centres of Chaps-UK. Occupation and male infertility: glycol ethers and other exposures. Occup Environ Med. 2008;65:708–14.

    Article  CAS  PubMed  Google Scholar 

  24. Vaziri MH, Gilani MAS, Kavoursi A, Firoozeh M, Jazanai RK, Dizaj AVT, Mohseni H, Lankarani NB, Azizi M, Yazdi RS. The relationship between occupation and semen quality. Int J Fertil Steril. 2011;5:66–71.

    PubMed  PubMed Central  Google Scholar 

  25. Sharpe RM. Environment, lifestyle and male infertility. Baillieres Clin Endocrinol Metab. 2000;14:489–503.

    Article  CAS  Google Scholar 

  26. Larsen SB, Abell A, Bonde JP. Selection bias in occupational sperm studies. Am J Epidemiol. 1998;147:681–5.

    Article  CAS  PubMed  Google Scholar 

  27. Grajewski B, Cox C, Scrader SM, Murray WE, Edwards RM, Turner TW, Smith JM, Shekar SS, Evenson DP, Simon SD, Conover DL. Semen quality and hormone levels among radiofrequency heater operators. J Occup Environ Med. 2000;42:993–1005.

    Article  CAS  PubMed  Google Scholar 

  28. Tas S, Lauwerys R, Lison D. Occupational hazards for the male reproductive system. Crit Rev Toxicol. 1996;26:261–307.

    Article  CAS  PubMed  Google Scholar 

  29. Cherry N, Labreche F, Collins J, Tulandi T. Occupational exposure to solvents and male infertility. Occup Environ Med. 2001;58:635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welch LS, Schrader SM, Turner TW, Cullen MR. Effects of exposure to ethylene glycol ethers on shipyard painters: II. Male reproduction. Am J Ind Med. 1988;14:509–26.

    Article  CAS  PubMed  Google Scholar 

  31. Apostoli P, Kiss P, Porru S, Bonde JP, Vanhoorne M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS study group. Occup Environ Med. 1998;55:364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sallmen M, Lindbohm ML, Anttila A, Taskinen H, Hemminski K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology. 2000;11:141–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kolstad HA, Bonde JP, Spano M, Giwercman A, Zschiesche W, Kaae D, Larsen SB, Roeleveld N. Change in semen quality and sperm chromatin structure following occupational styrene exposure. ASCLEPIOS. Int Arch Occup Environ Health. 1999;72:135–41.

    Article  CAS  PubMed  Google Scholar 

  34. Lemasters GK, Olsen DM, Yiin JH, Lockey JE, Shukla R, Selevan SG, Schrader SM, Toth GP, Evenson DP, Huszar GR. Male reproductive effects of solvent and fuel exposure during aircraft maintenance. Reprod Toxicol. 1999;13:155–66.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Fei Y, Liu H, Zheng S, Ding Z, Jin W, Pan Y, Chen Z, Wang L, Chen G, Xu Z, Zhu Y, Yu Y. Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant. Int Arch Occup Environ Health. 2016;89:33–42.

    Article  CAS  PubMed  Google Scholar 

  36. Sancini A, Tomei F, Tomei G, Ciarrocca M, Palermo P, Gioffre PA, Tasciotti Z, Fiaschetti M, Cetica C, Caciari T. Exposure to urban stressors and free testosterone plasma values. Int Arch Occup Environ Health. 2011;84:609–16.

    Article  CAS  PubMed  Google Scholar 

  37. Tomao E, Tomei G, Rosati MV, Caciari T, Danese D, Gamberale D, Vacca D, Palermo P, Anzelmo V, Tomei F. Luteinizing hormone (LH) levels in male workers exposed to urban stressors. Sci Total Environ. 2009;407:4591–5.

    Article  CAS  PubMed  Google Scholar 

  38. Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Ennviron Sci. 2004;11:33–45.

    CAS  Google Scholar 

  39. Eaton M, Schenker M, Whorton MD, Samuels S, Perkins C, Overstreet J. Seven-year follow-up of workers exposed to 1,2-dibromo-3-chloropropane. J Occup Med. 1986;28:1145–50.

    CAS  PubMed  Google Scholar 

  40. Potashnik G, Portah A. Dibromochloropropane (DBCP): a 17-year reassessment of testicular function and reproductive performance. J Occup Environ Med. 1995;37:1287–92.

    Article  CAS  PubMed  Google Scholar 

  41. Goldsmith JR. Dibromochloropropane: epidemiological findings and current questions. Ann NY Acad Sci. 1997;837:300–6.

    Article  CAS  PubMed  Google Scholar 

  42. Andersson AM, Jorgensen N, Frydelund-Larsen L, Rajpert-de Meyts E, Skakkebaek NE. Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J Clin Endocrinol Metab. 2004;89:3161–7.

    Article  CAS  PubMed  Google Scholar 

  43. Jorgensen N, Joensen UN, Toppari J, Punab M, Erenpreiss J, Zilaitiene B, Paasch U, Salzbrunn A, Fernandez MF, Virtanene HE, Matulevicius V, Olea N, Jensen TK, Petersen JH, Skakkebaek NE, Andersson AM. Compensated reduction in Leydig cell function is associated with lower semen quality variables: a study of 8182 European young men. Hum Reprod. 2016;31:947–57.

    Article  CAS  PubMed  Google Scholar 

  44. Perry MJ. Effects of environmental and occupational pesticide exposure on human sperm: a systematic review. Hum Reprod Update. 2008;14:233–42.

    Article  CAS  PubMed  Google Scholar 

  45. Magnusdottir EV, Thorsteinsson T, Thorsteindottir S, Hemisdottir M, Olafsdottir K. Persistent organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod. 2005;20:208–15.

    Article  PubMed  Google Scholar 

  46. Toft G, Rignell-Hydbom A, Tyrkile E, Shvets M, Giwercman A, Lindh CH, Pedersen HS, Ludwicki JK, Lesovoy V, Hagmar L, Spano M, Manicardi GC, Bonefeld-Jorgensen EC, Thulstrup AM, Bonde JP. Semen quality and exposure to persistent organochlorine pollutants. Epidemiology. 2006;17:450–8.

    Article  PubMed  Google Scholar 

  47. Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology. 2013;307:66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mumford SL, Kim S, Chen Z, Gore-Langton RE, Barr DB, Buck Louis GM. Persistent organic pollutants and semen quality: the LIFE study. Chemosphere. 2015;135:427–35.

    Article  CAS  PubMed  Google Scholar 

  49. Perry MJ, Venners SA, Chen X, Liu X, Tang G, Xing H, Barr DB, Xu X. Organophosphorous pesticide exposures and sperm quality. Reprod Toxicol. 2011;31:75–9.

    Article  CAS  PubMed  Google Scholar 

  50. Melgarejo M, Mendiola J, Koch HM, Monino-Garcia M, Noguera-Velasco JA, Torres-Cantero AM. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from and infertility clinic. Environ Res. 2015;137:292–8.

    Article  CAS  PubMed  Google Scholar 

  51. Radwan M, Jurewicz J, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Hanke W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med. 2014;56:1113–9.

    Article  CAS  PubMed  Google Scholar 

  52. Emeville E, Giton F, Giusti A, Olive A, Fiet J, Thome J-P, Blanchet P, Multigner L. Persistent organochlorine pollutants with endocrine activity and blood steroid hormone levels in middle-aged men. PLoS ONE. 2013;8:e66460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Omoike OE, Lewis RC, Meeker JD. Association between urinary biomarkers of exposure to organophosphate insecticides and serum reproductive hormones in men from NHANES 1999–2002. Reprod Toxicol. 2015;53:99–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meeker JD, Barr DB, Hauser R. Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod Toxicol. 2009;27:155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hagmar L, Bjork J, Sjodin A, Bergman A, Erfurth EM. Plasma levels of persistent organohalogens and hormone levels in adult male humans. Arch Environ Health. 2001;56:138–43.

    Article  CAS  PubMed  Google Scholar 

  56. Martin SA Jr, Harlow SD, Sowers MF, Longnecker MP, Garabrant D, Shore DL, Sandler DP. DDT metabolite and androgens in African-American farmers. Epidemiology. 2002;13:454–8.

    Article  PubMed  Google Scholar 

  57. Cocco P, Loviselli A, Fadda D, Ibba A, Melis M, Oppo A, Serra S, Taberlet A, Tocco MG, Flore C. Serum sex hormones in men occupationally exposed to dichloro-diphenyl-trichloro ethane (DDT) as young adults. J Endocr. 2004;182:391–7.

    Article  CAS  PubMed  Google Scholar 

  58. Giwercman A, Rignell-Hydbom A, Toft G, Rylander L, Hagmar L, Lindh C, Pedersen HS, Ludwicki JK, Lesovoy V, Shvets M, Spano M, Manicardi GC, Bizzaro D, Bonefeld-Jorgensen EC, Bonde JP, INUENDO. Reproductive hormone levels in men exposed to persistent organohalogen pollutants: a study of Inuit and there European cohorts. Environ Health Perspect. 2006;114:1348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferguson KK, Hauser R, Altshul L, Meeker JD. Serum concentrations of p, p’ -DDE, HCB, PCBs and reproductive hormones amongst men of reproductive age. Reprod Toxicol. 2012;34:429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blanco-Munoz J, Morales MM, Lacasana M, Aguilar-Garduno C, Bassol S, Cebrian ME. Exposure to organophosphate pesticides and male hormone profile in floriculturists of the state of Morelos, Mexico. Hum Reprod. 2010;25:1787–95.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshinaga J, Imai K, Shiraishi H, Nozawa S, Yoshiike M, Mieno MN, Andersson A-M, Iwamoto T. Pyrethroid insecticide exposure and reproductive hormone levels in healthy Japanese male subjects. Andrology. 2014;2:416–20.

    Article  CAS  PubMed  Google Scholar 

  62. Goncharov A, Rej R, Negoita S, Schymura M, Santiago-Rivera A, Morse G, The Akwesasne Task Force on the Environment, Carpenter DO. Lower serum testosterone associated with elevated polychlorinated biphenyl concentrations in native American men. Environ Health Perspect. 2009;117:1454–1460.

    Google Scholar 

  63. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18:169–84.

    Article  CAS  PubMed  Google Scholar 

  64. Setchell BP. Heat and the testis. J Reprod Fertil. 1998;114:179–84.

    Article  CAS  PubMed  Google Scholar 

  65. Mieusset R, Bujan L. The potential of mild testicular heating as a safe, effective and reversible contraceptive method for men. Int J Androl. 1995;17:186–91.

    Article  Google Scholar 

  66. Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, Foresta C. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28:877–85.

    Article  CAS  PubMed  Google Scholar 

  67. Thonneau P, Bujan L, Multigner L, Mieusset R. Occupational heat exposure and male fertility: a review. Hum Reprod. 1998;13:2122–5.

    Article  CAS  PubMed  Google Scholar 

  68. Figa-Talamanca I, Cini C, Varricchio GC, et al. Effects of prolonged autovehicle driving on male reproductive function: a study among taxi drivers. Am J Ind Med. 1996;30:750–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bujan L, Daudin M, Charlet J-P, Thonneau P, Mieusset R. Increase in scrotal temperature in car drivers. Hum Reprod. 2000;15:1355–7.

    Article  CAS  PubMed  Google Scholar 

  70. Brindley GS. Deep scrotal temperature and the effect on it of clothing, air temperature, activity, posture and paraplegia. Br J Urol. 1982;54:49–55.

    Article  CAS  PubMed  Google Scholar 

  71. Ibrahim E, Lynne CM, Brackett NL. Male fertility following spinal cord injury: an update. Andrology. 2016;4:13–26.

    Article  CAS  PubMed  Google Scholar 

  72. Hjollund NH, Bonde JP, Jensen TK, Olsen J. Diurnal scrotal skin temperature and semen quality. The Danish first pregnancy planner study team. Int J Androl. 2000;23:309–18.

    Article  CAS  PubMed  Google Scholar 

  73. Hjollund NH, Storgaard L, Ernst E, Bonde JP, Olsen J. The relation between daily activities and scrotal temperature. Reprod Toxicol. 2002;16:209–14.

    Article  CAS  PubMed  Google Scholar 

  74. Hjollund NH, Storgaard L, Ernst E, Bonde JP, Olsen J. Impact of diurnal scrotal temperature on semen quality. Reprod Toxicol. 2002;16:215–21.

    Article  CAS  PubMed  Google Scholar 

  75. Gaskins AJ, Afeiche MC, Hauser R, Williams PL, Gillman MW, Tanrikut C, Petrozza JC, Chavarro JE. Paternal physical and sedentary activities in relation to semen quality and reproductive outcomes among couples from a fertility center. Hum Reprod. 2014;29:2575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garolla A, Torino M, Miola P, Caretta N, Pizzol D, Menegazzo M, Bertoldo A, Foresta C. Twenty-four-hour monitoring of scrotal temperature in obese men and men with varicocele as a mirror of spermatogenic function. Hum Reprod. 2015;30:1006–13.

    Article  PubMed  Google Scholar 

  77. Hjollund NH, Storgaard L, Ernst E, Bonde JP, Christensen K, Olsen J. Correlation of scrotal temperature in twins. Hum Reprod. 2002;17:1837–8.

    Article  PubMed  Google Scholar 

  78. Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Physiol. 2012;112:3267–73.

    Article  CAS  PubMed  Google Scholar 

  79. Paul C, Melton DW, Saunders PTK. A single, mild transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136:73–84.

    Article  CAS  PubMed  Google Scholar 

  80. Jung A, Eberl M, Schill WB. Improvement of semen quality by nocturnal scrotal cooling and moderate behavioural change to reduce genital heat stress in men with oligoasthenoteratozoospermia. Reproduction. 2001;121:595–603.

    Article  CAS  PubMed  Google Scholar 

  81. Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, Jensen TK, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2012;19:221–31.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2016;7:153–61.

    Article  Google Scholar 

  83. Hakonsen LB, Thulstrup AM, Aggerholm AS, Olsen J, Bonde JP, Andersen CY, Bungum M, Ernst EH, Hansen ML, Ernst EH, Ramlau-Hansen CH. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod Health. 2011;8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rosenblatt A, Faintuch J, Cecconello I. Abnormalities of reproductive function in male obesity before and after bariatric surgery—a comprehensive review. Obes Surg. 2015;25:1281–92.

    Article  PubMed  Google Scholar 

  85. Anifandis G, Dafopoulos K, Messini CI, Polzos N, Messinis IE. The BMI of men and not sperm parameters impact on embryo quality and the IVF outcome. Andrology. 2013;1:85–9.

    Article  CAS  PubMed  Google Scholar 

  86. Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online. 2015;31:593–604.

    Article  PubMed  Google Scholar 

  87. McPherson NO, Lane M. Male obesity and subfertility, is it really about increased adiposity? Asian J Androl. 2015;17:450–8.

    PubMed  PubMed Central  Google Scholar 

  88. Andersen JM, Ronning PO, Heming H, Bekken SD, Haugen TB, Witczak O. Fatty acid composition of spermatozoa is associated with BMI and with semen quality. Andrology. 2016;. doi:10.1111/andr.12227.

    Google Scholar 

  89. Lu JC, Jing J, Yao Q, Fan K, Wang GH, Feng RX, Liang YJ, Chen L, Ge YF, Yao B. Relationship between lipids levels of serum and seminal plasma and semen parameters in 631 Chinese subfertile men. PLoS ONE. 2016;11:e0146304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Jensen TK, Heitmann BL, Jensen MB, Halldorsson TI, Andersson A-M, Skakkebaek NE, Joensen UN, Lauritsen MP, Christiansen P, Dalgard C, Lassen TH, Jorgensen N. High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population. Am J Clin Nutr. 2013;97:411–8.

    Article  CAS  PubMed  Google Scholar 

  91. Saez-Lancellotti TE, Boarelli PV, Romero AA, Funes AK, Cid-Barria M, Cabrillana ME, Monclus MA, Simon L, Vicenti AE, Fornes MW. Semen quality and sperm function loss by hypercholesterolemic diet was recovered by addition of olive oil to diet in rabbit. PLoS ONE. 2013;8:e52386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nielsen TL, Hagen C, Wraae K, Brixen K, Petersen PH, Haug E, Larsen R, Andersen M. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J Clin Endocrinol Metab. 2007;92:2696–705.

    Article  CAS  PubMed  Google Scholar 

  93. Tajar A, Huhtaniemi IT, O’Neill TW, Lee DM, Finn JD, Pye SR, Lee DM, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, Kula K, Labrie F, Lean ME, Pendleton N, Punab M, Vanderschueren D, Wu FCW, EMAS Group. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European male aging study (EMAS). J Clin Endocrinol Metab. 2012;97:1508–16.

    Article  CAS  PubMed  Google Scholar 

  94. Traish AM, Miner MM, Morgentaler A, Zitzmann M. Testosterone deficiency. Amer J Med. 2011;124:578–87.

    Article  CAS  PubMed  Google Scholar 

  95. Ventimiglia E, Capogrosso P, Colichia M, Boeni L, Serino A, Castagna G, Clementi MC, La Croce G, Regina C, Bianchi M, Mirone V, Damiano R, Montorsi F, Salonia A. Metabolic syndrome in white European men presenting for primary couple’s infertility: investigation of the clinical and reproductive burden. Andrology. 2016;. doi:10.1111/andr.12232.

    PubMed  Google Scholar 

  96. Antonio L, Wu FCW, O’Neill TW, Pye SR, Carter EL, Finn JD, Rutter MK, Laurent MR, Huhtaniemi IP, Han TS, Lean MEJ, Keevil BG, Pendleton N, Rastrelli G, Forti G, Bartfai G, Casanueva FF, Kula K, Punab M, Giwercman A, Claessens F, Decallonne B, Vanderschueren D, The EMAS Study Group. Associations between sex steroids and the development of metabolic syndrome: a longitudinal study in European men. J Clin Endocrinol Metab. 2015;100:1396–1404.

    Google Scholar 

  97. Lopez M, Tena-Sempere M. Estrogens and the control of energy homeostasis. Trends Endocrinol Metab. 2015;26:411–21.

    Article  CAS  PubMed  Google Scholar 

  98. Roa J. Tena-Sempere M.Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 397:4–14.

    Google Scholar 

  99. Kawwass JF, Summer R, Kallen CB. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol Hum Reprod. 2015;21:617–32.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod. 2015;21:389–409.

    Article  PubMed  Google Scholar 

  101. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perotta A, Bhela S, Varian BJ, Ibrahim YM, Lakritz JR, Keraney SM, Chatzigigkos A, Hafler DA, Alm EJ, Erdman SE. Microbial reprogramming inhibits Western diet-associated obesity. PLoS ONE. 2013;8:e68596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS ONE. 2014;9:e84877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Erdman SE, Poutahidis T. Probiotic ‘glow of health’: it’s more than skin deep. Benef Microbes. 2014;5:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Hugh jones T. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab. 2004;89:3313–8.

    Article  CAS  PubMed  Google Scholar 

  105. Vine MF. Smoking and male reproduction: a review. Int J Androl. 1996;19:323–37.

    Article  CAS  PubMed  Google Scholar 

  106. English KM, Pugh PJ, Parry H, Scutt NE, Channer KS, Jones TH. Effect of cigarette smoking on levels of bioavailable testosterone in healthy men. Clin Sci. 2001;100:661–5.

    Article  CAS  PubMed  Google Scholar 

  107. Wang W, Yang X, Liang J, Liao M, Zhang H, Qin X, Mo L, Lv W, Mo Z. Cigarette smoking has a positive and independent effect on testosterone levels. Hormones. 2013;12:567–77.

    Article  PubMed  Google Scholar 

  108. Ramlau-Hansen CH, Thulstrup AM, Olsen J, Ernst E, Andersen CY, Bonde JP. Maternal smoking in pregnancy and reproductive hormones in adult sons. Int J Androl. 2007;31:565–72.

    Article  PubMed  CAS  Google Scholar 

  109. Jensen TK, Swan SH, Jorgensen N, Toppari J, Redmon B, Punab M, Drobnis EZ, Haugen TB, Zilaitiene B, Sparks AE, Irvine DS, Wang C, Jouannet P, Brazil C, Paasch U, Salzbrunn A, Skakkebaek NE, Andersson A-M. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum Reprod. 2014;29:1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Emanuele MA, Emanuele N. Alcohol and the male reproductive system. Alcohol Res Health. 2001;25:282–7.

    CAS  PubMed  Google Scholar 

  111. Nargund VH. Effects of psychological stress on male fertility. Nat Rev Urol. 2015;12:373–82.

    Article  CAS  PubMed  Google Scholar 

  112. Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and—adrenal axes. J Neuroendocrinol. 2002;14:506–13.

    Article  CAS  PubMed  Google Scholar 

  113. Rahnema CD, Crosnoe LE, Kim ED. Designer steroids—over-the-counter supplements and their androgenic component: review of an increasing problem. Andrology. 2015;3:150–5.

    Article  CAS  PubMed  Google Scholar 

  114. Coward RM, Rajanahally S, Kovac JR, Smith RP, Pastuszak AW, Lipshultz LI. Anabolic steroid induced hypogonadism in young men. J Urol. 2013;190:2200–5.

    Article  CAS  PubMed  Google Scholar 

  115. Wu FCW. Endocrine aspects of anabolic steroids. Clin Chem. 1997;43:1289–92.

    CAS  PubMed  Google Scholar 

  116. Eisenberg ML. The association between marijuana use and male reproductive health. Amer J Epidemiol. 2015;182:482–4.

    Article  Google Scholar 

  117. Gundersen TD, Jorgensen N, Andersson A-M, Bang AK, Nordkap L, Skakkebaek NE, Priskorn L, Juul A, Jensen TK. Association between use of marijuana and male reproductive hormones and semen quality: a study among 1,215 healthy young men. Amer J Epidemiol. 2015;182:473–81.

    Article  Google Scholar 

  118. Bawor M, Bami H, Dennis BD, Plater C, Worster A, Varenbut M, Daiter J, Marsh DC, Steiner M, Anglin R, Coote M, Pare G, Thabane L, Samaan Z. Testosterone suppression in opioid users: a systematic review and meta-analysis. Drug Alcohol Depend. 2015;149:1–9.

    Article  CAS  PubMed  Google Scholar 

  119. Elias AN, Wilson AF. Exercise and gonadal function. Hum Reprod. 1993;8:1747–61.

    Article  CAS  PubMed  Google Scholar 

  120. De Souza MJ, Arce JC, Pescatello LS, Scherzer HS, Luciano AA. Gonadal hormones and semen quality in male runners. A volume threshold effect of endurance training. Int J Sports Med. 1994;15:383–91.

    Article  PubMed  Google Scholar 

  121. Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnell C, van den Driesche S, Jobling M, Chambers TJG, de Gendt K, Verhoeven G, O’Hara L, Platts S, de Franca L, Lara NLM, Anderson RA, Sharpe RM. Fetal programming of adult Leydig cell function via androgenic effects on stem/progenitor cells. Proc Natl Acad Sci USA. 2014;111:E1924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, Sharpe RM. Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology. 2009;150:5055–64.

    Article  CAS  PubMed  Google Scholar 

  123. Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, Drake AJ, van den Driesche S. Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl. 2011;33:279–87.

    Article  CAS  Google Scholar 

  124. Thankamony A, Lek N, Carroll D, Williams M, Dunger DB, Acerini CL, Ong KK, Hughes IA. Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ Health Perspect. 2014;122:207–11.

    PubMed  Google Scholar 

  125. Eisenberg ML, Hsieh TC, Pasluszak AW, McIntyre MG, Walters RC, Lamb DJ, Lishultz LI. The relationship between anogenital distance and the androgen receptor CAG repeat length. Asian J Androl. 2013;15:286–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eisenberg ML, Hsieh MH, Walters RC, Krasnow R, Lipshultz LI. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE. 2011;6:e18973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eisenberg ML, Jensen TK, Walters RC, Skakkebaek NE, Lipshultz LI. The relationship between anogenital distance and reproductive hormone levels in adult men. J Urol. 2012;187:594–8.

    Article  CAS  PubMed  Google Scholar 

  128. Mendiola J, Stahlhut RW, Jorgensen N, Liu F, Swan SH. Shorter anogenital distance predicts poorer semen quality in young men in Rochester, New York. Environ Health Perspect. 2011;119:958–63.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mendiola J, Melgarejo M, Monino-Garcia M, Cutillas-Tolin A, Noguero-Velasco JA, Torres-Cantero AM. Is anogenital distance associated with semen quality in male partners of subfertile couples. Andrology. 2015;3:672–6.

    Article  CAS  PubMed  Google Scholar 

  130. Zhou N, Sun L, Yang H, Chen Q, Wang X, Yang H, Tan L, Chen H, Zhang G, Ling X, Huang L, Zou P, Peng K, Liu T, Liu J, Ao L, Zhou Z, Cui Z, Cao J. Anogenital distance is associated with serum reproductive hormones, but not with semen quality in young men. Hum Reprod. 2016;31:958–67.

    Article  PubMed  Google Scholar 

  131. Eisenberg ML, Lipshultz LI. Anogenital distance as a measure of human male fertility. J Assist Reprod Genet. 2015;32:479–84.

    Article  PubMed  Google Scholar 

  132. Thankamony A, Pasterski V, Ong KK, Acerini CL, Hughes IA. Anogenital distance as a marker of androgen exposure in humans. Andrology. 2016;. doi:10.1111/andr.12156.

    PubMed  Google Scholar 

  133. Vanbillemont G, Lapauw B, Bogaert V, De Naeyer H, De Bacquer D, Ruige J, Kaufman JM, Taes YE. Birth weight in relation to sex steroid status and body composition in young healthy male siblings. J Clin Endocrinol Metab. 2010;95:1587–94.

    Article  CAS  PubMed  Google Scholar 

  134. Jorgensen N, Asklund C, Carlsen E, Skakkebaek NE. Coordinated European investigations of semen quality: results from studies of Scandinavian young men is a matter of concern. Int J Androl. 2006;29:54–61.

    Article  PubMed  Google Scholar 

  135. Tajar A, Forti G, O’Neill TW, Lee DM, Silman AJ, Finn JD, Bartfai G, Boonen S, Casanueva FF, Giwercman A, Han TS, Kula K, Labrie F, Lean ME, Pendleton N, Punab M, Vanderschueren D, Huhtaniemi IT, Wu FC, The EMAS Group. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European male ageing study. J Clin Endocrinol Metab. 2010;95:1810–1818.

    Google Scholar 

  136. Travison T, Araujo A, O’Donnell A, Kupelian V, McKinlay J. A Population-level decline in serum testosterone levels in American men. J Clin Endocrinol Metab. 2007;92:196–202.

    Article  CAS  PubMed  Google Scholar 

  137. Andersson A, Jensen T, Juul A, Petersen J, Jørgensen T, Skakkebaek N. Secular decline in male testosterone and sex hormone binding globulin serum levels in Danish population surveys. J Clin Endocrinol Metab. 2007;92:4696–705.

    Article  CAS  PubMed  Google Scholar 

  138. Perheentupa A, Makinen J, Laatikainen T, Vierula M, Skakkebaek NE, Andersson A-M, Toppari J. A cohort effect on serum testosterone levels in Finnish men. Eur J Endocrinol. 2013;168:227–33.

    Article  CAS  PubMed  Google Scholar 

  139. Kristensen DM, Hass U, Lesne L, Lottrup G, Jacobsen PR, Desdoits-Lethimonier C, Boberg J, Petersen JH, Toppari J, Jensen TK, Brunak S, Skakkebaek NE, Nellemann C, Main KM, Jegou B, Leffers H. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum Reprod. 2011;26:235–44.

    Article  CAS  PubMed  Google Scholar 

  140. Van den Driesche S, MacDonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, McKinnell C, Dean A, Homer NZ, Jorgensen A, Camacho-Moll M-E, Sharpe RM, Mitchell RT. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med. 2015;7:288ra80.

    Google Scholar 

  141. Jensen MS, Henriksen TB, Rebordosa C, Thulstrup AM, Toft G, Sorensen HT, Bonde JP, Olsen J. Analgesics during pregnancy and cryptorchidism: additional analyses. Epidemiology. 2011;22:610–2.

    Article  PubMed  Google Scholar 

  142. Jensen MS, Rebordosa C, Thulstrup AM, Toft G, Sorensen HT, Bonde JP, Henriksen TB, Olsen J. Maternal use of acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk of cryptorchidism. Epidemiology. 2010;21:779–85.

    Article  PubMed  Google Scholar 

  143. Snijder CA, Kortenkamp A, Steegers EA, Jaddoe VW, Hofman A, Hass U, Burdorf A. Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia in the offspring: the Generation R Study. Hum Reprod. 2012;27:1191–201.

    Article  PubMed  Google Scholar 

  144. Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over-the-counter medications during pregnancy. Am J Obstet Gynecol. 2005;193:771–7.

    Article  PubMed  Google Scholar 

  145. Haavisto TE, Adamsson NA, Myllymaki SA, Toppari J, Paranko J. Effects of 4-tert-octylphenol, 4-tert-butylphenol and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod Toxicol. 2003;17:593–605.

    Article  CAS  PubMed  Google Scholar 

  146. Delbes G, Levacher C, Habert R. Estrogen effects on fetal and neonatal testicular development. Reproduction. 2006;132:527–38.

    Article  CAS  PubMed  Google Scholar 

  147. van den Driesche S, Walker M, McKinnell C, Scott HM, Eddie SL, Seckl JR, Drake AJ, Smith LB, Anderson RA, Sharpe RM. Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which results in masculinization disorders in rodents. PLoS ONE. 2012;7:e37064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. N’Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud’homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal Leydig cell function. PLoS ONE. 2012;7:e51579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mitchell RT, Sharpe RM, Anderson RA, McKinnell C, Macpherson S, Smith LB, Wallace WHB, Kelnar CJH, van den Driesche S. Diethylstilboestrol exposure does not reduce testosterone production in human fetal testis xenografts. PLoS ONE. 2013;8:e61726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fowler PA, Drake AJ, Antignac JP, Le Bizec B, Connolly L, Panagiotis F, Soffientini U, O’Shaughnessy PJ. New insights into human fetal development: endogenous oestrogens, maternal smoking and gene methylation. In: Program & Abstracts of 8th Copenhagen Workshop on Endocrine Disruptors, April 2015.

    Google Scholar 

  151. Mylchreest E, Wallace DG, Cattley RC, Foster PMD. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 2000;55:143–51.

    Article  CAS  PubMed  Google Scholar 

  152. Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, Gray LE Jr. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000;58:339–49.

    Article  CAS  PubMed  Google Scholar 

  153. Fisher JS, Macpherson S, Marchetti N, Sharpe RM. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod. 2003;18:1383–94.

    Article  CAS  PubMed  Google Scholar 

  154. van den Driesche S, Kolovos P, Platts S, Drake AJ, Sharpe RM. Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat. PLoS ONE. 2012;7:e30111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lambrot R, Muczynski V, Lecureuil C, Angenard G, Coffigny H, Pairault C, Moison D, Frydman R, Habert R, Rouiller-Fabre V. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect. 2009;117:32–7.

    Article  CAS  PubMed  Google Scholar 

  156. Mitchell RT, Childs AC, Anderson RA, van den Driesche S, Saunders PTK, McKinnell C, Wallace WHB, Kelnar CJH, Sharpe RM. Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di(n-butyl) phthalate. J Clin Endocrinol Metab. 2012;97:E341–8.

    Article  CAS  PubMed  Google Scholar 

  157. Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K. Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. Environ Health Perspect. 2012;120:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McKinnell C, Mitchell RT, Walker M, Morris K, Kelnar CJ, Wallace WH, Sharpe RM. Effect of fetal or neonatal exposure to monobutyl phthalate (MBP) on testicular development and function in the marmoset. Hum Reprod. 2009;24:2244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hallmark N, Walker M, McKinnell C, Mahood IK, Scott H, Bayne R, Coutts S, Anderson RA, Greig I, Morris K, Sharpe RM. Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect. 2007;115:390–6.

    Article  CAS  PubMed  Google Scholar 

  160. Meeker JD, Calafat AM, Hauser R. Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormones levels in adult men. J Androl. 2009;30:287–97.

    Article  CAS  PubMed  Google Scholar 

  161. Mendiola J, Meeker JD, Jorgensen N, Andersson A-M, Liu F, Calafat AM, Redmon JB, Drobnis EZ, Sparks AE, Wang C, Hauser R, Swan SH. Urinary concentrations of di(2-ethylhexyl) phthalate metabolites and serum reproductive hormones: pooled analysis of fertile and infertile men. J Androl. 2012;33:488–98.

    Article  CAS  PubMed  Google Scholar 

  162. Joensen UN, Frederiksen H, Jensen MB, Lauritsen MP, Olesen IA, Lassen TH, Andersson A-M, Jorgensen N. Phthalate excretion pattern and testicular function: a study of 881 healthy Danish men. Environ Health Perspect. 2012;120:1397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gaspari L, Paris F, Jandel C, Kalfa N, Orsini M, Daures JP, Sultan C. Prenatal environmental risk factors for genital malformations in a population of 1442 French male newborns: a nested case-control study. Hum Reprod. 2011;26:3155–62.

    Article  PubMed  Google Scholar 

  164. Andersen HR, Schmidt IM, Grandjean P, Jensen TK, Budt-Jorgensen E, Kjaerstad MB, Baelum J, Nielsen JB, Skakkebaek NE, Main KM. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect. 2008;116:566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wohlfahrt-Veje C, Andersen HR, Jensen TK, Grandjean P, Skakkebaek NE, Main KM. Smaller genitals at school age in boys whose mothers were exposed to non-persistent pesticides in early pregnancy. Int J Androl. 2012;35:265–72.

    Article  CAS  PubMed  Google Scholar 

  166. Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355:208–20.

    Article  CAS  PubMed  Google Scholar 

  167. Damgaard IN, Skakkebaek NE, Toppari J, Virtanen HE, Shen H, Schramm KW, Petersen JH, Jensen TK, Main KM and the Nordic Cryptorchidism Study Group. Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect. 2006;114:1133–1138.

    Google Scholar 

  168. Longnecker MP, Gladen BC, Cupul-Uicab LA, Romano-Riquer SP, Weber JP, Chapin RE, Hernandez-Avila M. In utero exposure to the antiandrogen 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) in relation to anogenital distance in male newborns from Chiapas, Mexico. Amer J Epidemiol. 2007;165:1015–22.

    Article  Google Scholar 

  169. Trabert B, Longnecker MP, Brock JW, Klebanoff MA, McGlynn KA. Maternal pregnancy levels of trans-nonachlor and oxychlordane and prevalence of cryptorchidism and hypospadias in boys. Environ Health Perspect. 2012;120:478–82.

    Article  CAS  PubMed  Google Scholar 

  170. Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod. 2012;27:1391–400.

    Article  CAS  PubMed  Google Scholar 

  171. Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–4243.

    Google Scholar 

  172. Chambers TJG, Morgan MD, Heger AH, Sharpe RM, Drake AJ. High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner without affecting the intra-testicular germ-cell transcriptome. Sci Rep. 2016;6:31857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ouvrier A, Alves G, Damon-Soubetrand C, Marceau G, Cadet R, Janny L, Brugnon F, Kocer A, Pommier A, Lobaccaro JMA, Drevet JR, Saez F. Dietary cholesterol-induced post-testicular infertility. PLoS ONE. 2011;6:e26966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Terashima M, Barbour S, Ren J, Yu W, Han Y, Muegge K. Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics. 2015;10:861–71.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JWK, Bucklnad ME, Keam SP, Hutvagner G, Humphreys DT, Langley KG, Henstridge DC, Martin DIK, Febbraio MA, Suter CM. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab. 2016;. doi:10.1016/j.molmet.2016.06.08.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Sharpe BSc, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharpe, R.M. (2017). Environmental Causes of Testicular Dysfunction. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics