Skip to main content

Male Hypogonadism Due to Cancer and Cancer Treatments

  • Chapter
  • First Online:
Male Hypogonadism

Abstract

Survival rates after cancer treatment have increased dramatically in recent decades, resulting in an increasing focus on the harmful effects of cancer treatment for these patients. One of the major long-term effects of cancer and its treatment is compromised reproductive function in both males and females. These effects may occur as a result of direct effects on the gonad or indirect effects via damage to the hypothalamus or pituitary. In males, there may be impairment of testicular function prior to the commencement of treatment while the direct effects of exposure to cytotoxic therapies may also damage the seminiferous epithelium leading to oligo- or azoospermia. In addition to effects on the germ cells, Leydig cell dysfunction may occur, resulting in impaired testosterone production. This chapter describes the effects of cancer and its treatment on male reproductive function in terms of damage to the seminiferous epithelium and testosterone production. We also discuss the options, both established and experimental, for fertility preservation in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  2. Anderson RA, et al. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet Diabetes Endocrinol. 2015;3(7):556–67.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell RT, et al. Male fertility and strategies for fertility preservation following childhood cancer treatment. Endocr Dev. 2009;15:101–34.

    CAS  PubMed  Google Scholar 

  4. Howell SJ, et al. Testicular function after cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J Clin Oncol. 1999;17(5):1493–8.

    Article  CAS  PubMed  Google Scholar 

  5. Meistrich ML, et al. Recovery of sperm production after chemotherapy for osteosarcoma. Cancer. 1989;63(11):2115–23.

    Article  CAS  PubMed  Google Scholar 

  6. Pryzant RM, et al. Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin’s lymphomas. J Clin Oncol. 1993;11(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  7. da Cunha MF, et al. Recovery of spermatogenesis after treatment for Hodgkin’s disease: limiting dose of MOPP chemotherapy. J Clin Oncol. 1984;2(6):571–7.

    Article  PubMed  Google Scholar 

  8. Watson AR, Rance CP, Bain J. Long term effects of cyclophosphamide on testicular function. Br Med J (Clin Res Ed). 1985;291(6507):1457–60.

    Article  CAS  Google Scholar 

  9. Rowley MJ, et al. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.

    Article  CAS  PubMed  Google Scholar 

  10. Rivkees SA, Crawford JD. The relationship of gonadal activity and chemotherapy-induced gonadal damage. JAMA. 1988;259(14):2123–5.

    Article  CAS  PubMed  Google Scholar 

  11. Shalet SM, et al. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol. 1989;120(1):161–5.

    Article  CAS  PubMed  Google Scholar 

  12. Viviani S, et al. Testicular dysfunction in Hodgkin’s disease before and after treatment. Eur J Cancer. 1991;27(11):1389–92.

    Article  CAS  PubMed  Google Scholar 

  13. Rueffer U, et al. Male gonadal dysfunction in patients with Hodgkin’s disease prior to treatment. Ann Oncol. 2001;12(9):1307–11.

    Article  CAS  PubMed  Google Scholar 

  14. Sieniawski M, et al. Assessment of male fertility in patients with Hodgkin’s lymphoma treated in the German Hodgkin Study Group (GHSG) clinical trials. Ann Oncol. 2008;19(10):1795–801.

    Article  CAS  PubMed  Google Scholar 

  15. van der Kaaij MA, et al. Sperm quality before treatment in patients with early stage Hodgkin’s lymphoma enrolled in EORTC-GELA Lymphoma Group trials. Haematologica. 2009;94(12):1691–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marmor D, et al. Semen analysis in Hodgkin’s disease before the onset of treatment. Cancer. 1986;57(10):1986–7.

    Article  CAS  PubMed  Google Scholar 

  17. Padron OF, et al. Effects of cancer on spermatozoa quality after cryopreservation: a 12-year experience. Fertil Steril. 1997;67(2):326–31.

    Article  CAS  PubMed  Google Scholar 

  18. Fitoussi, et al., Semen analysis and cryoconservation before treatment in Hodgkin’s disease. Ann Oncol, 2000;11(6): 679–84.

    Google Scholar 

  19. Tal R, et al. Follow-up of sperm concentration and motility in patients with lymphoma. Hum Reprod. 2000;15(9):1985–8.

    Article  CAS  PubMed  Google Scholar 

  20. Gandini L, et al. Testicular cancer and Hodgkin’s disease: evaluation of semen quality. Hum Reprod. 2003;18(4):796–801.

    Article  CAS  PubMed  Google Scholar 

  21. Paoli D, et al. Spermatogenesis in Hodgkin’s lymphoma patients: a retrospective study of semen quality before and after different chemotherapy regimens. Hum Reprod. 2016;31(2):263–72.

    CAS  PubMed  Google Scholar 

  22. Krawczuk-Rybak M, et al. Assessment of gonadal function in boys and adolescents at the diagnosis of neoplastic disease. J Pediatr Endocrinol Metab. 2012;25(5–6):453–8.

    CAS  PubMed  Google Scholar 

  23. Shekarriz M, et al. Cryopreservation and semen quality in patients with Hodgkin’s disease. Cancer. 1995;75(11):2732–6.

    Article  CAS  PubMed  Google Scholar 

  24. Barr RD, Clark DA, Booth JD. Dyspermia in men with localized Hodgkin’s disease. A potentially reversible, immune-mediated disorder. Med Hypotheses. 1993;40(3):165–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hendry WF, et al. Semen analysis in testicular cancer and Hodgkin’s disease: pre- and post-treatment findings and implications for cryopreservation. Br J Urol. 1983;55(6):769–73.

    Article  CAS  PubMed  Google Scholar 

  26. Meirow D, Schenker JG. Cancer and male infertility. Hum Reprod. 1995;10(8):2017–22.

    Article  CAS  PubMed  Google Scholar 

  27. Berthelsen JG. Testicular cancer and fertility. Int J Androl. 1987;10(1):371–80.

    Article  CAS  PubMed  Google Scholar 

  28. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

    Article  CAS  PubMed  Google Scholar 

  29. Raman JD, Nobert CF, Goldstein M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J Urol, 2005;174(5): 1819–22; discussion 1822.

    Google Scholar 

  30. Guazzieri S, et al. Sperm antibodies and infertility in patients with testicular cancer. Urology. 1985;26(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  31. Pietzak EJ 3rd, et al. Histology of testicular biopsies obtained for experimental fertility preservation protocol in boys with cancer. J Urol. 2015;194(5):1420–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hadziselimovic F, Herzog B, Buser M. Development of cryptorchid testes. Eur J Pediatr. 1987;146(Suppl 2):S8–12.

    Article  PubMed  Google Scholar 

  33. Huff DS, et al. Abnormal germ cell development in cryptorchidism. Horm Res. 2001;55(1):11–7.

    CAS  PubMed  Google Scholar 

  34. Nistal M, Paniagua R. Occurrence of primary spermatocytes in the infant and child testis. Andrologia. 1984;16(6):532–6.

    Article  CAS  PubMed  Google Scholar 

  35. Darzy KH, Shalet SM. Hypopituitarism after cranial irradiation. J Endocrinol Invest. 2005;28(5 Suppl):78–87.

    CAS  PubMed  Google Scholar 

  36. Rappaport R, et al. Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab. 1982;54(6):1164–8.

    Article  CAS  PubMed  Google Scholar 

  37. Constine LS, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  38. Ogilvy-Stuart AL, et al. Treatment of radiation-induced growth hormone deficiency with growth hormone-releasing hormone. Clin Endocrinol (Oxf). 1997;46(5):571–8.

    Article  CAS  Google Scholar 

  39. van Alphen MM, van de Kant HJ, de Rooij DG. Depletion of the spermatogonia from the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 1988;113(3):473–86.

    Article  PubMed  Google Scholar 

  40. Jahnukainen K, et al. Semen quality and fertility in adult long-term survivors of childhood acute lymphoblastic leukemia. Fertil Steril. 2011;96(4):837–42.

    Article  PubMed  Google Scholar 

  41. Gurgan T, Salman C, Demirol A. Pregnancy and assisted reproduction techniques in men and women after cancer treatment. Placenta, 2008;29 Suppl B: 152–9.

    Google Scholar 

  42. Sanders JE, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87(7):3045–52.

    CAS  PubMed  Google Scholar 

  43. Williams D, Crofton PM, Levitt G. Does ifosfamide affect gonadal function? Pediatr Blood Cancer. 2008;50(2):347–51.

    Article  PubMed  Google Scholar 

  44. Lampe H, et al. Fertility after chemotherapy for testicular germ cell cancers. J Clin Oncol. 1997;15(1):239–45.

    Article  CAS  PubMed  Google Scholar 

  45. Bokemeyer C, et al. Long-term gonadal toxicity after therapy for Hodgkin’s and non-Hodgkin’s lymphoma. Ann Hematol. 1994;68(3):105–10.

    Article  CAS  PubMed  Google Scholar 

  46. Pont J, Albrecht W. Fertility after chemotherapy for testicular germ cell cancer. Fertil Steril. 1997;68(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  47. Petersen PM, et al. Dose-dependent impairment of testicular function in patients treated with cisplatin-based chemotherapy for germ cell cancer. Ann Oncol. 1994;5(4):355–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lopez Andreu JA, et al. Persistent altered spermatogenesis in long-term childhood cancer survivors. Pediatr Hematol Oncol. 2000;17(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  49. van Beek RD, et al. Inhibin B is superior to FSH as a serum marker for spermatogenesis in men treated for Hodgkin’s lymphoma with chemotherapy during childhood. Hum Reprod. 2007;22(12):3215–22.

    Article  PubMed  CAS  Google Scholar 

  50. Ghavamzadeh A, et al. Thyroid, parathyroid, gonadal, and pancreatic beta-cell function after bone marrow transplantation with chemotherapy-only conditioning. Transplant Proc. 2003;35(8):3101–4.

    Article  CAS  PubMed  Google Scholar 

  51. Gundgurthi A, et al. Endocrine complications after busulphan and cyclophosphamide based hematopoietic stem cell transplant: A single tertiary care centre experience. Indian J Endocrinol Metab. 2013;17(5):855–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Panasiuk A, et al. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan. Br J Haematol. 2015;170(5):719–26.

    Article  CAS  PubMed  Google Scholar 

  53. Green DM, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aubier F, et al. Male gonadal function after chemotherapy for solid tumors in childhood. J Clin Oncol. 1989;7(3):304–9.

    Article  CAS  PubMed  Google Scholar 

  55. Meistrich ML, et al. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70(11):2703–12.

    Article  CAS  PubMed  Google Scholar 

  56. Wyns C, et al. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16(3):312–28.

    Article  PubMed  Google Scholar 

  57. Essig S, et al. Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2014;15(8):841–51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lendon M, et al. Testicular histology after combination chemotherapy in childhood for acute lymphoblastic leukaemia. Lancet. 1978;2(8087):439–41.

    Article  CAS  PubMed  Google Scholar 

  59. Wallace WH, et al. Male fertility in long-term survivors of childhood acute lymphoblastic leukaemia. Int J Androl. 1991;14(5):312–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nurmio M, et al. Effect of childhood acute lymphoblastic leukemia therapy on spermatogonia populations and future fertility. J Clin Endocrinol Metab. 2009;94(6):2119–22.

    Article  CAS  PubMed  Google Scholar 

  61. Behringer K, et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol. 2013;31(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  62. Dohle GR. Male infertility in cancer patients: Review of the literature. Int J Urol. 2010;17(4):327–31.

    Article  PubMed  Google Scholar 

  63. Lee SJ, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24(18):2917–31.

    Article  PubMed  Google Scholar 

  64. Sarafoglou K, et al. Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr. 1997;130(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  65. Anserini P, et al. Semen analysis following allogeneic bone marrow transplantation. Additional data for evidence-based counselling. Bone Marrow Transplant. 2002;30(7):447–51.

    Article  CAS  PubMed  Google Scholar 

  66. Rovo A, et al. Spermatogenesis in long-term survivors after allogeneic hematopoietic stem cell transplantation is associated with age, time interval since transplantation, and apparently absence of chronic GvHD. Blood. 2006;108(3):1100–5.

    Article  CAS  PubMed  Google Scholar 

  67. van Casteren NJ, et al. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer. 2009;52(1):108–12.

    Article  PubMed  Google Scholar 

  68. Wilhelmsson M, et al. Adult testicular volume predicts spermatogenetic recovery after allogeneic HSCT in childhood and adolescence. Pediatr Blood Cancer. 2014;61(6):1094–100.

    Article  CAS  PubMed  Google Scholar 

  69. Hansen SW, Berthelsen JG, von der Maase H. Long-term fertility and Leydig cell function in patients treated for germ cell cancer with cisplatin, vinblastine, and bleomycin versus surveillance. J Clin Oncol. 1990;8(10):1695–8.

    Article  CAS  PubMed  Google Scholar 

  70. Stuart NS, et al. Long-term toxicity of chemotherapy for testicular cancer–the cost of cure. Br J Cancer. 1990;61(3):479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Palmieri G, et al. Gonadal function after multimodality treatment in men with testicular germ cell cancer. Eur J Endocrinol. 1996;134(4):431–6.

    Article  CAS  PubMed  Google Scholar 

  72. Brydoy M, et al. Paternity and testicular function among testicular cancer survivors treated with two to four cycles of cisplatin-based chemotherapy. Eur Urol. 2010;58(1):134–40.

    Article  PubMed  Google Scholar 

  73. Brauner R, et al. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia. N Engl J Med. 1983;309(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  74. Sklar C. Reproductive physiology and treatment-related loss of sex hormone production. Med Pediatr Oncol. 1999;33(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kinsella TJ, et al. Long-term follow-up of testicular function following radiation therapy for early-stage Hodgkin’s disease. J Clin Oncol. 1989;7(6):718–24.

    Article  CAS  PubMed  Google Scholar 

  76. Pedrick TJ, Hoppe RT. Recovery of spermatogenesis following pelvic irradiation for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1986;12(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  77. Shapiro E, et al. Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol. 1985;3(9):1232–9.

    Article  CAS  PubMed  Google Scholar 

  78. Centola GM, et al. Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl. 1994;15(6):608–13.

    CAS  PubMed  Google Scholar 

  79. Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980;53(628):271–8.

    Article  CAS  PubMed  Google Scholar 

  80. Sklar CA. Growth and neuroendocrine dysfunction following therapy for childhood cancer. Pediatr Clin North Am. 1997;44(2):489–503.

    Article  CAS  PubMed  Google Scholar 

  81. Yau I, et al. Risk of hypogonadism from scatter radiation during pelvic radiation in male patients with rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74(5):1481–6.

    Article  PubMed  Google Scholar 

  82. Chatterjee R, et al. Germ cell failure and Leydig cell insufficiency in post-pubertal males after autologous bone marrow transplantation with BEAM for lymphoma. Bone Marrow Transplant. 1994;13(5):519–22.

    CAS  PubMed  Google Scholar 

  83. Nord C, et al. Gonadal hormones in long-term survivors 10 years after treatment for unilateral testicular cancer. Eur Urol. 2003;44(3):322–8.

    Article  PubMed  Google Scholar 

  84. Thomson AB, et al. Late reproductive sequelae following treatment of childhood cancer and options for fertility preservation. Best Pract Res Clin Endocrinol Metab. 2002;16(2):311–34.

    Article  PubMed  Google Scholar 

  85. Wallace WH, Thomson AB. Preservation of fertility in children treated for cancer. Arch Dis Child. 2003;88(6):493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petersen PM, et al. Effect of graded testicular doses of radiotherapy in patients treated for carcinoma-in-situ in the testis. J Clin Oncol. 2002;20(6):1537–43.

    Article  PubMed  Google Scholar 

  87. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.

    Article  CAS  Google Scholar 

  88. Bang AK, et al. Testosterone production is better preserved after 16 than 20 Gray irradiation treatment against testicular carcinoma in situ cells. Int J Radiat Oncol Biol Phys. 2009;75(3):672–6.

    Article  CAS  PubMed  Google Scholar 

  89. Giwercman A, et al. Localized irradiation of testes with carcinoma in situ: effects on Leydig cell function and eradication of malignant germ cells in 20 patients. J Clin Endocrinol Metab. 1991;73(3):596–603.

    Article  CAS  PubMed  Google Scholar 

  90. Romerius P, et al. Hypogonadism risk in men treated for childhood cancer. J Clin Endocrinol Metab. 2009;94(11):4180–6.

    Article  CAS  PubMed  Google Scholar 

  91. Leung W, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol. 2000;18(18):3273–9.

    Article  CAS  PubMed  Google Scholar 

  92. Kilcoyne KR, et al. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A. 2014;111(18):E1924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Faria S, Cury F, Souhami L. Prospective phase I study on testicular castration induced by radiation treatment. Can J Urol. 2015;22(1):7635–9.

    PubMed  Google Scholar 

  94. Bhasin S, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.

    Article  CAS  PubMed  Google Scholar 

  95. Smith LB, Mitchell RT, McEwan IJ.Testosterone: from basic research to clinical applications. Springer briefs—reproductive biology series, 2013.

    Google Scholar 

  96. Howell SJ, et al. The impact of mild Leydig cell dysfunction following cytotoxic chemotherapy on bone mineral density (BMD) and body composition. Clin Endocrinol (Oxf). 2000;52(5):609–16.

    Article  CAS  Google Scholar 

  97. Howell SJ, et al. Fatigue, sexual function and mood following treatment for haematological malignancy: the impact of mild Leydig cell dysfunction. Br J Cancer. 2000;82(4):789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Howell SJ, et al. Randomized placebo-controlled trial of testosterone replacement in men with mild Leydig cell insufficiency following cytotoxic chemotherapy. Clin Endocrinol (Oxf). 2001;55(3):315–24.

    Article  CAS  Google Scholar 

  99. Monteil M, et al. Increased aneuploid frequency in spermatozoa from a Hodgkin’s disease patient after chemotherapy and radiotherapy. Cytogenet Cell Genet. 1997;76(3–4):134–8.

    Article  CAS  PubMed  Google Scholar 

  100. Robbins WA, et al. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nat Genet. 1997;16(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  101. Genesca A, et al. Significance of structural chromosome aberrations in human sperm: analysis of induced aberrations. Hum Genet. 1990;85(5):495–9.

    Article  CAS  PubMed  Google Scholar 

  102. Thomson AB, et al. Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet. 2002;360(9330):361–7.

    Article  CAS  PubMed  Google Scholar 

  103. Winther JF, et al. Radiotherapy for childhood cancer and risk for congenital malformations in offspring: a population-based cohort study. Clin Genet. 2009;75(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  104. Robbins WA. Cytogenetic damage measured in human sperm following cancer chemotherapy. Mutat Res. 1996;355(1–2):235–52.

    Article  PubMed  Google Scholar 

  105. Signorello LB, et al. Congenital anomalies in the children of cancer survivors: a report from the childhood cancer survivor study. J Clin Oncol. 2012;30(3):239–45.

    Article  PubMed  Google Scholar 

  106. Winther JF, et al. Genetic disease in the children of Danish survivors of childhood and adolescent cancer. J Clin Oncol. 2012;30(1):27–33.

    Article  PubMed  Google Scholar 

  107. Stahl O, et al. Risk of birth abnormalities in the offspring of men with a history of cancer: a cohort study using Danish and Swedish national registries. J Natl Cancer Inst. 2011;103(5):398–406.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hovav Y, et al. Electroejaculation before chemotherapy in adolescents and young men with cancer. Fertil Steril. 2001;75(4):811–3.

    Article  CAS  PubMed  Google Scholar 

  109. Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6(4):209–18.

    Article  PubMed  Google Scholar 

  110. Schover LR, et al. Oncologists’ attitudes and practices regarding banking sperm before cancer treatment. J Clin Oncol. 2002;20(7):1890–7.

    Article  PubMed  Google Scholar 

  111. Edge B, Holmes D, Makin G. Sperm banking in adolescent cancer patients. Arch Dis Child. 2006;91(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  112. Schover LR, et al. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol. 2002;20(7):1880–9.

    Article  PubMed  Google Scholar 

  113. van der Kaaij MA, et al. Cryopreservation, semen use and the likelihood of fatherhood in male Hodgkin lymphoma survivors: an EORTC-GELA Lymphoma Group cohort study. Hum Reprod. 2014;29(3):525–33.

    Article  PubMed  Google Scholar 

  114. Chapman RM, Sutcliffe SB, Malpas JS. Male gonadal dysfunction in Hodgkin’s disease. A prospective study. JAMA. 1981;245(13):1323–8.

    CAS  PubMed  Google Scholar 

  115. Chung K, et al. Sperm cryopreservation for male patients with cancer: an epidemiological analysis at the University of Pennsylvania. Eur J Obstet Gynecol Reprod Biol. 2004;113(Suppl 1):S7–11.

    Article  PubMed  Google Scholar 

  116. Aboulghar MA, et al. Fertilization and pregnancy rates after intracytoplasmic sperm injection using ejaculate semen and surgically retrieved sperm. Fertil Steril. 1997;68(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  117. Berensztein EB, et al. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab. 2002;87(11):5113–8.

    Article  CAS  PubMed  Google Scholar 

  118. Kelnar CJ, et al. Testicular changes during infantile ‘quiescence’ in the marmoset and their gonadotrophin dependence: a model for investigating susceptibility of the prepubertal human testis to cancer therapy? Hum Reprod. 2002;17(5):1367–78.

    Article  CAS  PubMed  Google Scholar 

  119. Shetty G, Meistrich ML. Hormonal approaches to preservation and restoration of male fertility after cancer treatment. J Natl Cancer Inst Monogr. 2005;34:36–9.

    Article  CAS  Google Scholar 

  120. Kurdoglu B, et al. Protection from radiation-induced damage to spermatogenesis by hormone treatment. Radiat Res. 1994;139(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  121. Parchuri N, Wilson G, Meistrich ML. Protection by gonadal steroid hormones against procarbazine-induced damage to spermatogenic function in LBNF1 hybrid rats. J Androl. 1993;14(4):257–66.

    CAS  PubMed  Google Scholar 

  122. Delic JI, Bush C, Peckham MJ. Protection from procarbazine-induced damage of spermatogenesis in the rat by androgen. Cancer Res. 1986;46(4 Pt 2):1909–14.

    CAS  PubMed  Google Scholar 

  123. Ward JA, et al. Protection of spermatogenesis in rats from the cytotoxic procarbazine by the depot formulation of Zoladex, a gonadotropin-releasing hormone agonist. Cancer Res. 1990;50(3):568–74.

    CAS  PubMed  Google Scholar 

  124. Kangasniemi M, et al. Rapid protection of rat spermatogenic stem cells against procarbazine by treatment with a gonadotropin-releasing hormone antagonist (Nal-Glu) and an antiandrogen (flutamide). Endocrinology. 1995;136(7):2881–8.

    CAS  PubMed  Google Scholar 

  125. Pogach LM, et al. Partial prevention of procarbazine induced germinal cell aplasia in rats by sequential GnRH antagonist and testosterone administration. Cancer Res. 1988;48(15):4354–60.

    CAS  PubMed  Google Scholar 

  126. Meistrich ML, Kangasniemi M. Hormone treatment after irradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia. J Androl. 1997;18(1):80–7.

    CAS  PubMed  Google Scholar 

  127. Meistrich ML, Wilson G, Huhtaniemi I. Hormonal treatment after cytotoxic therapy stimulates recovery of spermatogenesis. Cancer Res. 1999;59(15):3557–60.

    CAS  PubMed  Google Scholar 

  128. Shuttlesworth GA, et al. Enhancement of a spermatogonial proliferation and differentiation in irradiated rats by gonadotropin-releasing hormone antagonist administration. Endocrinology. 2000;141(1):37–49.

    CAS  Google Scholar 

  129. Crawford BA, et al. Testing the gonadal regression-cytoprotection hypothesis. Cancer Res. 1998;58(22):5105–9.

    CAS  PubMed  Google Scholar 

  130. Porter KL, Shetty G, Meistrich ML. Testicular edema is associated with spermatogonial arrest in irradiated rats. Endocrinology. 2006;147(3):1297–305.

    Article  CAS  PubMed  Google Scholar 

  131. Meistrich ML, et al. Mechanism of protection of rat spermatogenesis by hormonal pretreatment: stimulation of spermatogonial differentiation after irradiation. J Androl. 2000;21(3):464–9.

    CAS  PubMed  Google Scholar 

  132. Zhang Z, Shao S, Meistrich ML. The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells. J Cell Physiol. 2007;211(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  133. Boekelheide K, et al. Gonadotropin-releasing hormone antagonist (Cetrorelix) therapy fails to protect nonhuman primates (Macaca arctoides) from radiation-induced spermatogenic failure. J Androl. 2005;26(2):222–34.

    Article  CAS  PubMed  Google Scholar 

  134. Kamischke A, et al. Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: a controlled trial in a male nonhuman primate (Macaca fascicularis). J Endocrinol. 2003;179(2):183–94.

    Article  CAS  PubMed  Google Scholar 

  135. Johnson DH, et al. Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on posttherapy fertility in male patients with lymphoma: preliminary observations. Blood. 1985;65(4):832–6.

    CAS  PubMed  Google Scholar 

  136. Kreuser ED, et al. Reproductive toxicity with and without LHRHA administration during adjuvant chemotherapy in patients with germ cell tumors. Horm Metab Res. 1990;22(9):494–8.

    Article  CAS  PubMed  Google Scholar 

  137. Waxman JH, et al. Failure to preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol. 1987;19(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  138. Brennemann W, et al. Attempted protection of spermatogenesis from irradiation in patients with seminoma by D-Tryptophan-6 luteinizing hormone releasing hormone. Clin Investig. 1994;72(11):838–42.

    Article  CAS  PubMed  Google Scholar 

  139. Redman JR, et al. Semen cryopreservation and artificial insemination for Hodgkin’s disease. J Clin Oncol. 1987;5(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  140. Fossa SD, Klepp O, Norman N. Lack of gonadal protection by medroxyprogesterone acetate-induced transient medical castration during chemotherapy for testicular cancer. Br J Urol. 1988;62(5):449–53.

    Article  CAS  PubMed  Google Scholar 

  141. Masala A, et al. Use of testosterone to prevent cyclophosphamide-induced azoospermia. Ann Intern Med. 1997;126(4):292–5.

    Article  CAS  PubMed  Google Scholar 

  142. Jahnukainen K, Mitchell RT, Stukenborg JB. Testicular function and fertility preservation after treatment for haematological cancer. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  143. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Human reproduction update. 2006;12(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  144. Jahnukainen K, Stukenborg JB. Clinical review: Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab. 2012;97(12):4341–51.

    Article  CAS  PubMed  Google Scholar 

  145. Jahnukainen K, et al. Fertility preservation after sterilizing therapy through autologous ectopic grafting of cryopreserved testicular tissue in prepubertal monkeys. Cancer Research, 2012. In press.

    Google Scholar 

  146. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Nat Acad Sci U S A. 1994;91(24):11298–302.

    Article  CAS  Google Scholar 

  147. Honaramooz A, et al. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418(6899):778–81.

    Article  CAS  PubMed  Google Scholar 

  148. Schlatt S, et al. Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod. 2006;21(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  149. Galuppo AG. Spermatogonial stem cells as a therapeutic alternative for fertility preservation of prepubertal boys. Einstein (Sao Paulo). 2015;13(4):637–9.

    Article  Google Scholar 

  150. Sato T, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471(7339):504–7.

    Article  CAS  PubMed  Google Scholar 

  151. Sato T, et al. Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci U S A. 2012;109(42):16934–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yokonishi T, et al. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun. 2014;5:4320.

    Article  CAS  PubMed  Google Scholar 

  153. Tesarik J, et al. Restoration of fertility by in-vitro spermatogenesis. Lancet. 1999;353(9152):555–6.

    Article  CAS  PubMed  Google Scholar 

  154. Reda A, et al. In vitro Spermatogenesis - Optimal Culture Conditions for Testicular Cell Survival, Germ Cell Differentiation, and Steroidogenesis in Rats. Front Endocrinol (Lausanne). 2014;5:21.

    Google Scholar 

  155. Stukenborg JB, et al. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod. 2009;15(9):521–9.

    Article  PubMed  Google Scholar 

  156. Baert Y, et al. Derivation and characterization of a cytocompatible scaffold from human testis. Hum Reprod. 2015;30(2):256–67.

    Article  CAS  PubMed  Google Scholar 

  157. Kurimoto K, Saitou M. Mechanism and reconstitution in vitro of germ cell development in mammals. Cold Spring Harb Symp Quant Biol. 2015.

    Google Scholar 

  158. Kjartansdottir KR, et al. A combination of culture conditions and gene expression analysis can be used to investigate and predict hes cell differentiation potential towards male gonadal cells. PLoS One. 2015;10(12):e0144029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kurkure P, et al. Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reprod Biol Endocrinol. 2015;13:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Anand S, Patel H, Bhartiya D. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reprod Biol Endocrinol. 2015;13:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Hou J, et al. Generation of male differentiated germ cells from various types of stem cells. Reproduction. 2014;147(6):R179–88.

    Article  CAS  PubMed  Google Scholar 

  162. Stukenborg JB, et al. Male germ cell development in humans. Horm Res Paediatr. 2014;81(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  163. Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol. 2014;30:14–26.

    Article  PubMed  CAS  Google Scholar 

  164. Valli H, et al. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril, 2014;102(2):566–580 e7.

    Google Scholar 

  165. Nickkholgh B, et al. Enrichment of spermatogonial stem cells from long-term cultured human testicular cells. Fertil Steril, 2014:102(2): 558–565 e5.

    Google Scholar 

  166. Sadri-Ardekani H, et al. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil Steril, 2014;101(4): 1072–1078 e1.

    Google Scholar 

  167. Steinberger A. In vitro techniques for the study of spermatogenesis. Methods in enzymology, 1975;39(Journal Article): 283–296.

    Google Scholar 

  168. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18(4):169–84.

    Article  CAS  PubMed  Google Scholar 

  169. Nakamura M, Romrell LJ, Hall PF. The effects of temperature and glucose on protein biosynthesis by immature (round) spermatids from rat testes. J. cell biology. 1978;79(1):1–9.

    Article  CAS  Google Scholar 

  170. Steinberger A, Steinberger E. In vitro culture of rat testicular cells. Exp Cell Res. 1966;44(2):443–52.

    Article  CAS  PubMed  Google Scholar 

  171. Steinberger A, Steinberger E. Tissue culture of male mammalian gonads. In Vitro, 1970;5(Journal Article): 17–27.

    Google Scholar 

  172. Steinberger A, Steinberger E, Perloff WH. Mammalian testes in organ culture. Exp Cell Res, 1964;36(Journal Article): 19–27.

    Google Scholar 

  173. Hofmann MC, et al. Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Experimental Cell Research, 1992;201(Journal Article): 417–435.

    Google Scholar 

  174. Lee JH, et al. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials. 2006;27(14):2845–53.

    Article  CAS  PubMed  Google Scholar 

  175. Lee JH, et al. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertility and Sterility, 2007;10(Journal Article): 1016/j fertnstert.

    Google Scholar 

  176. Tesarik J. Overcoming maturation arrest by in vitro spermatogenesis: search for the optimal culture system. Fertil Steril. 2004;81(5):1417–9.

    Article  PubMed  Google Scholar 

  177. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008;29(5):469–87.

    Article  PubMed  Google Scholar 

  178. Tanaka A, et al. Completion of meiosis in human primary spermatocytes through in vitro coculture with Vero cells. Fertil Steril. 2003;79 Suppl 1(Journal Article):795–801.

    Google Scholar 

  179. Sato T, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun. 2011;2:472.

    Article  PubMed  CAS  Google Scholar 

  180. Yokonishi T, et al. In vitro spermatogenesis using an organ culture technique. Methods Mol Biol. 2013;927:479–88.

    Article  CAS  PubMed  Google Scholar 

  181. Abu Elhija M, et al. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14(2):285–93.

    Article  CAS  PubMed  Google Scholar 

  182. Stukenborg JB, et al. Coculture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. J Androl. 2008;29(3):312–29.

    Article  CAS  PubMed  Google Scholar 

  183. Sato T, et al. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS One. 2015;10(6):e0130171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Yang S, et al. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients. Stem Cell Reports. 2014;3(4):663–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dores C, Alpaugh W, Dobrinski I. From in vitro culture to in vivo models to study testis development and spermatogenesis. Cell Tissue Res, 2012.

    Google Scholar 

  186. Parent-Massin D. Relevance of clonogenic assays in hematotoxicology. Cell Biol Toxicol. 2001;17(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  187. Arkoun B, et al. Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis?. Cell Tissue Res, 2015.

    Google Scholar 

  188. Yokonishi T, Ogawa T. Cryopreservation of testis tissues and in vitro spermatogenesis. Reprod Med Biol. 2016;15:21–8.

    Article  CAS  PubMed  Google Scholar 

  189. Baert, Y., et al., Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril. 2015;104(5): 1244–1252 e4.

    Google Scholar 

  190. Yango P, et al. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation. Fertil Steril. 2014;102(5):1491–1498 e1.

    Google Scholar 

  191. Redaelli S, et al. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2012;3(6):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Frost J, et al. The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics. 2011;6(1):52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nickkholgh, B., et al., Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril. 2014:102(6): 1700–1707 e1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi Jahnukainen MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mitchell, R.T., Stukenborg, JB., Jahnukainen, K. (2017). Male Hypogonadism Due to Cancer and Cancer Treatments. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics