Skip to main content

Male Hypogonadism and Liver Disease

  • Chapter
  • First Online:
Male Hypogonadism

Abstract

Chronic liver disease and cirrhosis are common causes of morbidity and mortality. However, the relationship between sex hormones, most notably testosterone, and liver disease has been examined only in limited studies. Liver disease is generally associated with central hypogonadism, except in the setting of alcoholic liver disease in which ethanol results in testicular damage. There are limited data on the efficacy and safety of treatment of hypogonadism in the setting of liver disease. Data are mixed on improvements in morbidity and mortality with testosterone treatment with improvement in gynecomastia appearing to be the most consistently reported benefit. Although not powered to examine safety outcomes, studies have not demonstrated a clear increase in associated adverse events with testosterone therapy. Liver transplantation is also associated with improvement in testosterone levels in the majority of individuals. However, this finding is not uniform, likely related in part to pre-existing metabolic damage, immunosuppression, graft function, and potentially other comorbidities. Further research is needed on the efficacy and safety of testosterone treatment in liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starr SP, Raines D. Cirrhosis: diagnosis, management, and prevention. Am Fam Physician. 2011;84(12):1353–9.

    PubMed  Google Scholar 

  2. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol 2011;9(6):524–530.e1; quiz e60.

    Google Scholar 

  3. Eshraghian A, Taghavi SA. Systematic review: endocrine abnormalities in patients with liver cirrhosis. Arch Iran Med. 2014;17(10):713–21.

    PubMed  Google Scholar 

  4. Wass J OK. Oxford handbook of diabetes and endocrinology. 2014;3:657–659.

    Google Scholar 

  5. Guichelaar MM, Malinchoc M, Sibonga J, Clarke BL, Hay JE. Immunosuppressive and postoperative effects of orthotopic liver transplantation on bone metabolism. Liver Transpl. 2004;10(5):638–47.

    Article  PubMed  Google Scholar 

  6. Kaymakoglu S, Okten A, Cakaloglu Y, Boztas G, Besisik F, Tascioglu C, et al. Hypogonadism is not related to the etiology of liver cirrhosis. J Gastroenterol. 1995;30(6):745–50.

    Article  CAS  PubMed  Google Scholar 

  7. Sinclair M, Grossmann M, Gow PJ, Angus PW. Testosterone in men with advanced liver disease: abnormalities and implications. J Gastroenterol Hepatol. 2015;30(2):244–51.

    Article  PubMed  Google Scholar 

  8. Grossmann M, Hoermann R, Gani L, Chan I, Cheung A, Gow PJ, et al. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol (Oxf). 2012;77(2):323–8.

    Article  CAS  Google Scholar 

  9. Monegal A, Navasa M, Guanabens N, Peris P, Pons F, Martinez de Osaba MJ, et al. Bone disease after liver transplantation: a long-term prospective study of bone mass changes, hormonal status and histomorphometric characteristics. Osteoporos Int. 2001;12(6):484–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kharb S, Garg MK, Puri P, Brar KS, Pandit A, Srivastava S. Assessment of thyroid and gonadal function in liver diseases. Indian J Endocrinol Metab 2015;19(1):89–94.

    Google Scholar 

  11. Zietz B, Lock G, Plach B, Drobnik W, Grossmann J, Scholmerich J, et al. Dysfunction of the hypothalamic-pituitary-glandular axes and relation to Child-Pugh classification in male patients with alcoholic and virus-related cirrhosis. Eur J Gastroenterol Hepatol. 2003;15(5):495–501.

    CAS  PubMed  Google Scholar 

  12. Foresta C, Schipilliti M, Ciarleglio FA, Lenzi A, D’Amico D. Male hypogonadism in cirrhosis and after liver transplantation. J Endocrinol Invest. 2008;31(5):470–8.

    Article  CAS  PubMed  Google Scholar 

  13. Karagiannis A, Harsoulis F. Gonadal dysfunction in systemic diseases. Eur J Endocrinol. 2005;152(4):501–13.

    Article  CAS  PubMed  Google Scholar 

  14. Leung PC, Steele GL. Intracellular signaling in the gonads. Endocr Rev. 1992;13(3):476–98.

    CAS  PubMed  Google Scholar 

  15. Jones TH, Kennedy RL. Cytokines and hypothalamic-pituitary function. Cytokine. 1993;5(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  16. Van Thiel DH, McClain CJ, Elson MK, McMillan MJ, Lester R. Evidence for autonomous secretion of prolactin in some alcoholic men with cirrhosis and gynecomastia. Metabolism. 1978;27(12):1778–84.

    Article  PubMed  Google Scholar 

  17. De Besi L, Zucchetta P, Zotti S, Mastrogiacomo I. Sex hormones and sex hormone binding globulin in males with compensated and decompensated cirrhosis of the liver. Acta Endocrinol (Copenh). 1989;120(3):271–6.

    Google Scholar 

  18. De Palo EF, Bassanello M, Lancerin F, Spinella P, Gatti R, D’Amico D, et al. GH/IGF system, cirrhosis and liver transplantation. Clin Chim Acta. 2001;310(1):31–7.

    Article  PubMed  Google Scholar 

  19. McClain CJ, Kromhout JP, Elson MK, Van Thiel DH. Hyperprolactinemia in portal systemic encephalopathy. Dig Dis Sci. 1981;26(4):353–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mukherjee S, Kar M, Dutta S. Observation on serum prolactin in hepatic cirrhosis. J Indian Med Assoc. 1991;89(11):307–8.

    CAS  PubMed  Google Scholar 

  21. Corenblum B, Shaffer EA. Hyperprolactinemia in hepatic encephalopathy may result from impaired central dopaminergic neurotransmission. Horm Metab Res. 1989;21(12):675–7.

    Article  CAS  PubMed  Google Scholar 

  22. Simon-Holtorf J, Monig H, Klomp HJ, Reinecke-Luthge A, Folsch UR, Kloehn S. Expression and distribution of prolactin receptor in normal, fibrotic, and cirrhotic human liver. Exp Clin Endocrinol Diabetes. 2006;114(10):584–9.

    Article  CAS  PubMed  Google Scholar 

  23. Madersbacher S, Grunberger T, Maier U. Andrological status before and after liver transplantation. J Urol. 1994;151(5):1251–4.

    CAS  PubMed  Google Scholar 

  24. Maria N, Colantoni A, van Thiel D. The liver and endocrine function. In: Becker KL, editor. Principles and practice of endocrinology and metabolism. 3rd ed, ch. 205, pp 1870–1885. . Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  25. Bandyopadhyay SK, Moulick A, Saha M, Dutta A, Bandyopadhyay R, Basu AK. A study on endocrine dysfunction in adult males with liver cirrhosis. J Indian Med Assoc 2009;107(12):866, 868–9.

    Google Scholar 

  26. Gordon GG, Olivo J, Rafil F, Southren AL. Conversion of androgens to estrogens in cirrhosis of the liver. J Clin Endocrinol Metab. 1975;40(6):1018–26.

    Article  CAS  PubMed  Google Scholar 

  27. Green JR, Mowat NA, Fisher RA, Anderson DC. Plasma oestrogens in men with chronic liver disease. Gut. 1976;17(6):426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kley HK, Niederau C, Stremmel W, Lax R, Strohmeyer G, Kruskemper HL. Conversion of androgens to estrogens in idiopathic hemochromatosis: comparison with alcoholic liver cirrhosis. J Clin Endocrinol Metab. 1985;61(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  29. Tadic SD, Elm MS, Subbotin VM, Eagon PK. Hypogonadism precedes liver feminization in chronic alcohol-fed male rats. Hepatology. 2000;31(5):1135–40.

    Article  CAS  PubMed  Google Scholar 

  30. Rubin E, Lieber CS, Altman K, Gordon GG, Southren AL. Prolonged ethanol consumption increases testosterone metabolism in the liver. Science. 1976;191(4227):563–4.

    Article  CAS  PubMed  Google Scholar 

  31. Braunstein G. Chapter 12. Testes. In: Gardner DG, Shoback D. eds.Greenspan’s Basic & Clinical Endocrinology, 9e. New York, NY: McGraw-Hill; 2011. http://accessmedicine.mhmedical.com/Content.aspx?bookid=380&Sectionid=39744052. Accessed March 11, 2016.

  32. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. American Association for the Study of Liver Diseases. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54(1):328–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McDermott JH, Walsh CH. Hypogonadism in hereditary hemochromatosis. J Clin Endocrinol Metab. 2005;90(4):2451–5.

    Article  CAS  PubMed  Google Scholar 

  34. Yeap BB, Beilin J, Shi Z, Knuiman MW, Olynyk JK, Chubb SA, et al. The C282Y polymorphism of the hereditary hemochromatosis gene is associated with increased sex hormone-binding globulin and normal testosterone levels in men. J Endocrinol Invest. 2010;33(8):544–8.

    Article  CAS  PubMed  Google Scholar 

  35. Pelusi C, Gasparini DI, Bianchi N, Pasquali R. Endocrine dysfunction in hereditary hemochromatosis. J Endocrinol Invest. 2016;39(8):837–47.

    Article  CAS  PubMed  Google Scholar 

  36. Tampanaru-Sarmesiu A, Stefaneanu L, Thapar K, Kontogeorgos G, Sumi T, Kovacs K. Transferrin and transferrin receptor in human hypophysis and pituitary adenomas. Am J Pathol. 1998;152(2):413–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pietrangelo A. Hereditary hemochromatosis–a new look at an old disease. N Engl J Med. 2004;350(23):2383–97.

    Article  CAS  PubMed  Google Scholar 

  38. Walton C, Kelly WF, Laing I, Bu’lock DE. Endocrine abnormalities in idiopathic haemochromatosis. Q J Med 1983 Winter;52(205):99–110.

    Google Scholar 

  39. O’Sullivan EP, McDermott JH, Howel Walsh C. All that is hypogonadal in haemochromatosis is not due to iron deposition. Ir J Med Sci. 2007;176(1):45–7.

    Article  PubMed  Google Scholar 

  40. Falize L, Guillygomarc’h A, Perrin M, Laine F, Guyader D, Brissot P, et al. Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases. Hepatology. 2006;44(2):472–7.

    Article  PubMed  Google Scholar 

  41. Gautier A, Laine F, Massart C, Sandret L, Piguel X, Brissot P, et al. Liver iron overload is associated with elevated SHBG concentration and moderate hypogonadotrophic hypogonadism in dysmetabolic men without genetic haemochromatosis. Eur J Endocrinol. 2011;165(2):339–43.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly TM, Edwards CQ, Meikle AW, Kushner JP. Hypogonadism in hemochromatosis: reversal with iron depletion. Ann Intern Med. 1984;101(5):629–32.

    Article  CAS  PubMed  Google Scholar 

  43. O’Shea RS, Dasarathy S, McCullough AJ. Practice Guideline Committee of the American Association for the Study of Liver Diseases, Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology. 2010;51(1):307–28.

    PubMed  Google Scholar 

  44. Crabb DW. Pathogenesis of alcoholic liver disease: newer mechanisms of injury. Keio J Med. 1999;48(4):184–8.

    Article  CAS  PubMed  Google Scholar 

  45. Bird GL, Williams R. Factors determining cirrhosis in alcoholic liver disease. Mol Aspects Med. 1988;10(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  46. Mann RE, Smart RG, Govoni R. The epidemiology of alcoholic liver disease. Alcohol Res Health. 2003;27(3):209–19.

    PubMed  Google Scholar 

  47. Becker U, Gronbaek M, Johansen D, Sorensen TI. Lower risk for alcohol-induced cirrhosis in wine drinkers. Hepatology. 2002;35(4):868–75.

    Article  PubMed  Google Scholar 

  48. Sato N, Lindros KO, Baraona E, Ikejima K, Mezey E, Jarvelainen HA, et al. Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res 2001;25(5 Suppl ISBRA):40S-45S.

    Google Scholar 

  49. Chiao YB, Van Thiel DH. Biochemical mechanisms that contribute to alcohol-induced hypogonadism in the male. Alcohol Clin Exp Res 1983 Spring;7(2):131–134.

    Google Scholar 

  50. Ylikahri R, Huttunen M, Harkonen M, Adlercreutz H. Letter: Hangover and testosterone. Br Med J. 1974;2(5916):445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Badr FM, Bartke A, Dalterio S, Bulger W. Suppression of testosterone production by ethyl alcohol. Possible mode of action. Steroids. 1977;30(5):647–55.

    CAS  PubMed  Google Scholar 

  52. Bannister P, Handley T, Chapman C, Losowsky MS. Hypogonadism in chronic liver disease: impaired release of luteinising hormone. Br Med J (Clin Res Ed). 1986;293(6556):1191–3.

    Article  CAS  Google Scholar 

  53. Cicero TJ, Badger TM. Effects of alcohol on the hypothalamic-pituitary-gonadal axis in the male rat. J Pharmacol Exp Ther. 1977;201(2):427–33.

    CAS  PubMed  Google Scholar 

  54. Ciofalo FR. Chronic alcohol ingestion and alpha-adrenergic receptor characteristics. Proc West Pharmacol Soc. 1979;22:367–9.

    CAS  PubMed  Google Scholar 

  55. Jiang M, Klein M, Zanger UM, Mohammad MK, Cave MC, Gaikwad NW, et al. Inflammatory regulation of steroid sulfatase: A novel mechanism to control estrogen homeostasis and inflammation in chronic liver disease. J Hepatol. 2016;64(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  56. Denniston MM, Jiles RB, Drobeniuc J, Klevens RM, Ward JW, McQuillan GM, et al. Chronic hepatitis C virus infection in the United States, National Health and Nutrition Examination Survey 2003 to 2010. Ann Intern Med. 2014;160(5):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cacoub P, Gragnani L, Comarmond C, Zignego AL. Extrahepatic manifestations of chronic hepatitis C virus infection. Dig Liver Dis. 2014;15(46 Suppl 5):S165–73.

    Article  Google Scholar 

  58. Nguyen HV, Mollison LC, Taylor TW, Chubb SA, Yeap BB. Chronic hepatitis C infection and sex hormone levels: effect of disease severity and recombinant interferon-alpha therapy. Intern Med J. 2006;36(6):362–6.

    Article  CAS  PubMed  Google Scholar 

  59. Ferri C, Bertozzi MA, Zignego AL. Erectile dysfunction and hepatitis C virus infection. JAMA. 2002;288(6):698–9.

    Article  PubMed  Google Scholar 

  60. Machida K, Cheng KT, Lai CK, Jeng KS, Sung VM, Lai MM. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol. 2006;80(14):7199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zini A, Garrels K, Phang D. Antioxidant activity in the semen of fertile and infertile men. Urology. 2000;55(6):922–6.

    Article  CAS  PubMed  Google Scholar 

  62. Lorusso F, Palmisano M, Chironna M, Vacca M, Masciandaro P, Bassi E, et al. Impact of chronic viral diseases on semen parameters. Andrologia. 2010;42(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  63. Keating GM. Ledipasvir/Sofosbuvir: a review of its use in chronic hepatitis C. Drugs. 2015;75(6):675–85.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka K, Sakai H, Hashizume M, Hirohata T. Serum testosterone:estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients. Cancer Res. 2000;60(18):5106–10.

    CAS  PubMed  Google Scholar 

  65. White DL, Tavakoli-Tabasi S, Kuzniarek J, Pascua R, Ramsey DJ, El-Serag HB. Higher serum testosterone is associated with increased risk of advanced hepatitis C-related liver disease in males. Hepatology. 2012;55(3):759–68.

    Article  CAS  PubMed  Google Scholar 

  66. Chiu CM, Yeh SH, Chen PJ, Kuo TJ, Chang CJ, Chen PJ, et al. Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level. Proc Natl Acad Sci U S A. 2007;104(8):2571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lukanova A, Becker S, Husing A, Schock H, Fedirko V, Trepo E, et al. Prediagnostic plasma testosterone, sex hormone-binding globulin, IGF-I and hepatocellular carcinoma: etiological factors or risk markers? Int J Cancer. 2014;134(1):164–73.

    Article  PubMed  Google Scholar 

  68. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23.

    Article  PubMed  Google Scholar 

  69. Hazlehurst JM, Tomlinson JW. Non-alcoholic fatty liver disease in common endocrine disorders. Eur J Endocrinol. 2013;169(2):R27–37.

    Article  CAS  PubMed  Google Scholar 

  70. Kim S, Kwon H, Park JH, Cho B, Kim D, Oh SW, et al. A low level of serum total testosterone is independently associated with nonalcoholic fatty liver disease. BMC Gastroenterol 2012;12:69-230X-12-69.

    Google Scholar 

  71. Mantzoros CS. Role of leptin in reproduction. Ann N Y Acad Sci. 2000;900:174–83.

    Article  CAS  PubMed  Google Scholar 

  72. Pitteloud N, Hardin M, Dwyer AA, Valassi E, Yialamas M, Elahi D, et al. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab. 2005;90(5):2636–41.

    Article  CAS  PubMed  Google Scholar 

  73. Kapoor D, Malkin CJ, Channer KS, Jones TH. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf). 2005;63(3):239–50.

    Article  CAS  Google Scholar 

  74. Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJ, Giltay EJ, Saad F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf). 2010;73(5):602–12.

    Article  CAS  Google Scholar 

  75. Hoyos CM, Yee BJ, Phillips CL, Machan EA, Grunstein RR, Liu PY. Body compositional and cardiometabolic effects of testosterone therapy in obese men with severe obstructive sleep apnea: a randomized placebo-controlled trial. Eur J Endocrinol 2015;173(5):X3-12-0525e.

    Google Scholar 

  76. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  77. Birkeland KI, Hanssen KF, Torjesen PA, Vaaler S. Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab. 1993;76(2):275–8.

    CAS  PubMed  Google Scholar 

  78. Rhee J, Ge H, Yang W, Fan M, Handschin C, Cooper M, et al. Partnership of PGC-1alpha and HNF4alpha in the regulation of lipoprotein metabolism. J Biol Chem. 2006;281(21):14683–90.

    Article  CAS  PubMed  Google Scholar 

  79. Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids. 2010;75(12):998–1004.

    Article  CAS  PubMed  Google Scholar 

  80. Arroyo V, Gines P, Gerbes AL, Dudley FJ, Gentilini P, Laffi G, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology. 1996;23(1):164–76.

    CAS  PubMed  Google Scholar 

  81. Maruyama Y, Adachi Y, Aoki N, Suzuki Y, Shinohara H, Yamamoto T. Mechanism of feminization in male patients with non-alcoholic liver cirrhosis: role of sex hormone-binding globulin. Gastroenterol Jpn. 1991;26(4):435–9.

    CAS  PubMed  Google Scholar 

  82. Agboghoroma CO. Gynaecological and reproductive health issues in HIV-positive women. West Afr J Med 2010;29(3):135–142.

    Google Scholar 

  83. Curtis KM, Nanda K, Kapp N. Safety of hormonal and intrauterine methods of contraception for women with HIV/AIDS: a systematic review. AIDS. 2009;23(Suppl 1):S55–67.

    Article  CAS  PubMed  Google Scholar 

  84. Rifka SM, Pita JC, Vigersky RA, Wilson YA, Loriaux DL. Interaction of digitalis and spironolactone with human sex steroid receptors. J Clin Endocrinol Metab. 1978;46(2):338–44.

    Article  CAS  PubMed  Google Scholar 

  85. Sinha-Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab. 2003;285(1):E197–205.

    Article  CAS  PubMed  Google Scholar 

  86. Collier J. Bone disorders in chronic liver disease. Hepatology. 2007;46(4):1271–8.

    Article  CAS  PubMed  Google Scholar 

  87. George J, Ganesh HK, Acharya S, Bandgar TR, Shivane V, Karvat A, et al. Bone mineral density and disorders of mineral metabolism in chronic liver disease. World J Gastroenterol. 2009;15(28):3516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alcalde Vargas A, Pascasio Acevedo JM, Gutierrez Domingo I, Garcia Jimenez R, Sousa Martin JM, Ferrer Rios MT, et al. Prevalence and characteristics of bone disease in cirrhotic patients under evaluation for liver transplantation. Transplant Proc 2012;44(6):1496–1498.

    Google Scholar 

  89. Carter MW, Kraft JM, Hatfield-Timajchy K, Snead MC, Ozeryansky L, Fasula AM, et al. The reproductive health behaviors of HIV-infected young women in the United States: A literature review. AIDS Patient Care STDS. 2013;27(12):669–80.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Muehlenbein MP, Bribiescas RG. Testosterone-mediated immune functions and male life histories. Am J Hum Biol 2005;17(5):527–558.

    Google Scholar 

  91. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.

    Article  CAS  PubMed  Google Scholar 

  92. Wells R. Prednisolone and testosterone propionate in cirrhosis of the liver. A controlled trial. Lancet. 1960;2(7166):1416–9.

    CAS  PubMed  Google Scholar 

  93. Puliyel MM, Vyas GP, Mehta GS. Testosterone in the management of cirrhosis of the liver–a controlled study. Aust N Z J Med. 1977;7(6):17–30.

    Article  CAS  PubMed  Google Scholar 

  94. Rambaldi A, Gluud C. Anabolic-androgenic steroids for alcoholic liver disease. Cochrane Database Syst Rev 2006;(4):CD003045.

    Google Scholar 

  95. Testosterone treatment of men with alcoholic cirrhosis: a double-blind study. The Copenhagen Study Group for Liver Diseases. Hepatology 1986;6(5):807–813.

    Google Scholar 

  96. Yurci A, Yucesoy M, Unluhizarci K, Torun E, Gursoy S, Baskol M, et al. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin Res Hepatol Gastroenterol. 2011;35(12):845–54.

    Article  CAS  PubMed  Google Scholar 

  97. Montalto G, Miceli M, Soresi M, Amodio R, Carroccio A, Cartabellotta A, et al. Sex hormones in patients with liver cirrhosis and hepatocellular carcinoma. Oncol Rep 1997;4(1):173–176.

    Google Scholar 

  98. Farrell GC, Joshua DE, Uren RF, Baird PJ, Perkins KW, Kronenberg H. Androgen-induced hepatoma. Lancet. 1975;1(7904):430–2.

    Article  CAS  PubMed  Google Scholar 

  99. Monegal A, Navasa M, Guanabens N, Peris P, Pons F, Martinez de Osaba MJ, et al. Osteoporosis and bone mineral metabolism disorders in cirrhotic patients referred for orthotopic liver transplantation. Calcif Tissue Int. 1997;60(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  100. Reinhardt W, Patschan D, Pietruck F, Philipp T, Janssen OE, Mann K, et al. Free androgen index is superior to total testosterone for short-term assessment of the gonadal axis after renal transplantation. Horm Res. 2005;64(5):248–52.

    CAS  PubMed  Google Scholar 

  101. Jin B, McCaughan GW, Handelsman DJ. Effects of liver disease and transplantation on the human prostate. J Androl 1999;20(4):559–565.

    Google Scholar 

  102. Nagai Y, Ohsawa K, Ohta M, Hisada A, Yamashita H, Yoshizawa M, et al. Inhibitory effect of cyclosporin A on prolactin synthesis in GH3 cells. Tohoku J Exp Med. 1996;180(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  103. Wera S, Belayew A, Martial JA. Rapamycin, FK506 and cyclosporin A inhibit human prolactin gene expression. FEBS Lett. 1995;358(2):158–60.

    Article  CAS  PubMed  Google Scholar 

  104. Seethalakshmi L, Flores C, Malhotra RK, Pallias JD, Tharakan D, Khauli RB, et al. The mechanism of cyclosporine’s action in the inhibition of testosterone biosynthesis by rat Leydig cells in vitro. Transplantation. 1992;53(1):190–5.

    Article  CAS  PubMed  Google Scholar 

  105. Kantarci G, Sahin S, Uras AR, Ergin H. Effects of different calcineurin inhibitors on sex hormone levels in transplanted male patients. Transplant Proc 2004;36(1):178–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian S. Dobs MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, S.M., Yalamanchi, S., Dobs, A.S. (2017). Male Hypogonadism and Liver Disease. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics