Skip to main content

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 324))

  • 867 Accesses

Abstract

Turing was awarded the Order of the British Empire in June of 1946. Most people thought that the award was a well deserved mark of recognition honoring the mathematician who had given a successful definition of mechanical procedure, had introduced the universal machine capable of simulating all mechanical procedures, and had settled in the negative Hilbert’s Entscheidungsproblem , the problem whether mathematics is fully mechanizable. Few knew that Turing had received the OBE mainly because of his outstanding services as a cryptographer at Bletchley Park during the Second World War.

This essay is about Turing’s mathematical achievements. We will, as informally as possible, analyze his 1936 paper “On computable numbers with an application to the Entscheidungsproblem” and highlight the main ideas contained in this classical paper. Naturally, we will also discuss the broader context of Turing’s definitions and theorems, their fundamental interaction with Gödel’s completeness and incompleteness theorems, and their basic role in the proof of the Cook-Levin NP-completeness theorem and in the formulation of the P/NP problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note that in Turing’s remark below this contemporary understanding of reduction is “reversed”: Turing’s “reducing the unsolvability of A to the unsolvability of” amounts to “reducing the problem B to the problem A”.

  2. 2.

    Machines are here taken to be real physical mechanisms that consist of finitely many parts and operate in discrete steps; Gandy called them discrete mechanical devices and contrasted them to analogue machines. Parallel machines locally operate on parts of a given configuration; the results of the local operations are then joined into the next configuration. The paper (Mundici 1983) discusses Turing machines as physical objects under the effect of special relativity. Further papers by Mundici, quoted in this paper, discuss also quantum mechanical limitations. None of these papers, however, aims at motivating the boundedness and locality conditions for (Turing or parallel) machines.

References

  • Ackermann, W. 1928. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen 99. English translation in “On Hilbert’s Construction of the Real Numbers”, in J. van Heijenoort, (ed.) (1967), From Frege to Gödel: A Sourcebook in Mathematical Logic 1879–1931. 493–507. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Agrawal, M.N., N. Kayal, and N. Saxena. 2004. PRIMES is in P. Annals of Mathematics 160: 781–793.

    Article  Google Scholar 

  • Church, A. 1935. An Unsolvable Problem of Elementary Number Theory; Preliminary Report (Abstract). Bulletin of the American Mathematical Society 41: 332–333.

    Google Scholar 

  • ———. 1936. An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58: 345–363. Reprinted in Davis, ed. (1965).

    Google Scholar 

  • Cobham, A. 1964. The Intrinsic Computational Difficulty of Functions. In Proceedings of the 1964 International Congress for Logic, Methodology, and Philosophy of Science, ed. Y. Bar-Hillel. Amsterdam: North-Holland.

    Google Scholar 

  • Cook, S. 1971. The Complexity of Theorem Proving Procedures. In Proceedings of the Third Annual Acm Symposium on Theory of Computing, 151–158. New York: ACM.

    Google Scholar 

  • Davis, M. (ed.). 1965. The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions. Hewlett/NY: Raven Press.

    Google Scholar 

  • Davis, M. (ed.). 1994. Solvability, Provability, Definability: The Collected Works of Emil L. Post. Boston/Basel/Berlin: Birkhäuser.

    Google Scholar 

  • Davis, M. and W. Sieg 2015. Conceptual Confluence in 1936: Post and Turing. In Turing’s Revolution-The Impact of his Ideas about Computability, ed. G. Sommaruga and T. Strahm, Boston, Basel, Berlin, Birkhäuser, 3–27.

    Google Scholar 

  • Dedekind, R. 1872. Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. English translation “Continuity and Irrational Numbers” in W. Ewald, (ed.) (1996), Vol 2, 765–779.

    Google Scholar 

  • ———. 1888. Was sind und was sollen die Zahlen. Braunschweig: Vieweg. English translation in W. Ewald, (ed.) (1996), Vol. 2, 790–833.

    Google Scholar 

  • Edmonds, J. 1965. Paths, Trees, and Flowers. Canadian Journal of Mathematics 17: 449–467.

    Article  Google Scholar 

  • Ewald, W. (ed.) 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. 2 Vols. New York: Oxford University Press.

    Google Scholar 

  • Gandy, R.O. (1980). Church’s Thesis and Principles for Mechanisms. In The Kleene Symposium, ed. J. Barwise, H.j. Keisler and K. Kunen, 123–148. Amsterdam: North-Holland.

    Google Scholar 

  • ———. 1988. The Confluence of Ideas in 1936. In The Universal Turing Machine: A Half-Century Survey, ed. R. Herken, 55–112. New York: Oxford University Press.

    Google Scholar 

  • Garey, M.R., and D.S. Johnson. 1979. Computers and Intractability. San Francisco: W.H. Freeman.

    Google Scholar 

  • Gödel, K. 193?. Undecidable diophantine proposition. In S. Feferman et al. (eds.), (1995). Kurt Gödel Collected Works Vol. III: Unpublished Essays and Lectures, 164-175. New York: Oxford University Press.

    Google Scholar 

  • ———. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38: 173–198. Reprinted with English translation as “On Formally Undecidable Propositions of Principia Mathematica and Related Systems I”, in S. Feferman et al (eds.). 1986. Kurt Gödel Collected Works: Vol. I, Publications 1929–1936, 145–195. New York: Oxford University Press.

    Google Scholar 

  • ———. 1934. On Undecidable Propositions of Formal Mathematical Systems. In Kurt Gödel Collected Works, Vol. I: Publications 1926–1936, ed. S. Feferman et al., 346–372. New York/Oxford University Press.

    Google Scholar 

  • ———. 1946. Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics. In Kurt Gödel Collected Works, Vol. II: Publications 1938–1974, ed. S. Feferman et al., 150–153. New York: Oxford University Press.

    Google Scholar 

  • ———. 1963. Poscriptum to Gödel (1931). In Kurt Gödel Collected Works Vol. I: Publications 1929–1936, ed. S. Feferman et al., 195. New York: Oxford University Press.

    Google Scholar 

  • ———. 1964. Postscriptum to the 1934 Princeton Lectures. In Kurt Gödel Collected Works Vol. I: Publications 1929–1936, ed. S. Feferman et al., 369–371. New York: Oxford University Press.

    Google Scholar 

  • ———. 2003. Kurt Gödel Collected Works Volume V: Correspondence H-Z, ed. S. Feferman et al. New York: Oxford University Press.

    Google Scholar 

  • Herbrand, J. 1931. Sur la non-contradiction de l’arithmétique. Crelles Journal für die reine und angewandte Mathematik 166 (1931): 1–8. English translation “On the Consistency of Arithmetic”, in J. van Heijenoort (ed.) (1967/2000), pp. 618–628.

    Google Scholar 

  • Herken, R. (ed.). (1988). The Universal Turing Machine (A Half-Century Survey). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D., and Bernays, P. 1939/1970. Grundlagen der Mathematik. II, Die Grundlehren der Mathematischen Wissenschaften 50, 2nd ed., Berlin/New York: Springer.

    Google Scholar 

  • Jacobs, K. 1992. Invitation to Mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Karp, R. 1972. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations, ed. R.E. Miller and J.W. Thatcher. New York: Plenum.

    Google Scholar 

  • Khachiyan, L.G. 1979. A Polynomial Algorithm in Linear Programming, Doklady Akademii Nauk. SSSR 244 (1979): 1093–1096. English translation in Soviet Mathematics Doklady 20 (1979), 191–194.

    Google Scholar 

  • Kolmogorov, A., and Uspensky, V. 1958. On the Definition of Algorithm (Russian). Uspekhi mat. Nauk. 13(4): 3–28. English translation in American Mathematical Society Translations 29 (1963): 217–245.

    Google Scholar 

  • Levin, L. 1973. Universal Search Problems (Russian). Problemy Peredachi Informatsii 9 (3): 115–116. English translation in Trakhtenbrot, B. A. (trans.) (1984). “A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms”. Annals of the History of Computing 6(4): 384–400.

  • Miller, G.L. 1976. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and System Sciences 13 (3): 300–317.

    Article  Google Scholar 

  • Mundici, D. 1983. Natural Limitations of Decision Procedures for Arithmetic with Bounded Quantifiers. Archive for Mathematical Logic 23: 37–54.

    Article  Google Scholar 

  • ———. 2012. Logic, a Brief Course. Milan: Springer.

    Book  Google Scholar 

  • Mundici, D., and W. Sieg. 1995. Paper Machines. Philosophia Mathematica 3 (3): 5–30.

    Article  Google Scholar 

  • Péter, R. 1967. Recursive Functions, 3rd ed. New York: Academic. 1st ed. (1951), 2nd ed. (revised) 1957, Rekursive Funktionen. Budapest: Akadémiai Kiado.

    Google Scholar 

  • Post, E.L. 1936. Finite Combinatory Processes, Formulation 1. Journal of Symbolic Logic 1: 103–105. Reprinted in M. Davis (ed.) (1965), pp. 288–291 and in M. Davis (ed.) (1994), 103–5.

    Google Scholar 

  • ———. 1943. Formal Reductions of the General Combinatorial Decision Problems. American Journal of Mathematics 65(2): 199–215. Reprinted in M. Davis (ed.) (1965), 442–460.

    Google Scholar 

  • ———. 1947. Recursive Unsolvability of a Problem of Thue. Journal of Symbolic Logic 12(1): 1–11. Reprinted in M. Davis (ed.) (1965), pp. 292–303 and in M. Davis (ed.) (1994), 503–13.

    Google Scholar 

  • Rabin, M.O. 1960. Degree of Difficulty of Computing A Function and Hierarchy of Recursive Sets. Jerusalem: Hebrew University.

    Google Scholar 

  • Robertson, N., and P. Seymour. 1983. Graph Minors. I. Excluding a Forest. Journal of Combinatorial Theory Series B 35: 39–61.

    Google Scholar 

  • Robertson, N., and P. Seymour 2004. Graph Minors. XX. Wagner’s Conjecture. Journal of Combinatorial Theory Series B92: 325–357.

    Google Scholar 

  • Sieg, W. 1994. Mechanical Procedures and Mathematical Experience. In Mathematics and Mind, ed. A. George, 91–117. New York: Oxford University Press.

    Google Scholar 

  • ———. 1997. Step by Recursive Step: Church’s Analysis of Effective Calculability. Reprinted in Church’s Thesis After 70 years, ed. A. Olszewski, J. Wolenski, and R. Janusz, 456–485. Ontos Verlag: Frankfurt.

    Google Scholar 

  • ———. 2009. On Computability. In Philosophy of Mathematics, ed. A.D. Irvine, 535–630. Amsterdam/Boston/Oxford: Elsevier.

    Chapter  Google Scholar 

  • Sieg, W., and J. Byrnes. 1996. K-Graph Machines: Generalizing Turing’s Machines and Arguments. In Lecture Notes in Logic 6, ed. P. Hájek, 98–119. New York: Springer.

    Google Scholar 

  • Skolem, T. 1923. Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich. Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-naturvidenskabelig klasse (6): 1–38. English translation “The Foundations of Elementary Arithmetic Established by Means of the Recursive Mode of Thought, Without the Use of Apparent Variables Ranging Over Infinite Domains”, in J. van Heijenoort, (ed.) (2000), 302–333.

    Google Scholar 

  • Smale, S. 1983. On the Average Number of Steps of the Simplex Method of Linear Programming. Mathematical Programming 27 (3): 241–262.

    Article  Google Scholar 

  • Turing, A. M. 1936/37. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42): 230–265. Erratum. 1937. ibid., 43: 544–546.

    Google Scholar 

  • Turing, A.M. 1950. The Word Problem in Semi-Groups with Cancellation. Annals of Mathematics 52: 491–505.

    Article  Google Scholar 

  • ———. 1954. Solvable and Unsolvable Problems. Science News 31: 7–23.

    Google Scholar 

  • van Heijenoort, J. (ed.) 1967/2000. From Frege to Gödel: A Sourcebook in Mathematical Logic 1879–1931. Harvard University Press: Cambridge, MA.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rossella Lupacchini and Guglielmo Tamburrini for their valuable comments and suggestions towards clarity and understandability. This paper has appeared in earlier form in Italian, as (2014) “Turing, il Matematico”, in Contributi del Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, Rome, Vol. 129, pp. 85–120. Convegno Per il Centenario di Alan Turing Fondatore Dell’Informatica, 22 November 2012, Scienze e Lettere Editore Commerciale, Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mundici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mundici, D., Sieg, W. (2017). Turing, the Mathematician. In: Floyd, J., Bokulich, A. (eds) Philosophical Explorations of the Legacy of Alan Turing. Boston Studies in the Philosophy and History of Science, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-53280-6_2

Download citation

Publish with us

Policies and ethics