Skip to main content

Experimental Methods

  • Chapter
  • First Online:
  • 322 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Across experimental physics there is a common theme in the design of experiments. One part of this theme is finding a way to produce the system for study. Another part is designing the equipment to collect the signals required to interpret what the system is doing. In nuclear physics, the appropriate choice of reaction will create the desired system and the equipment for signal collection will depend on what is to be measured. This chapter will discuss the reaction, detectors, and techniques used in the examination of transverse wobbling in135Pr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.D. Anderson, Phys. Rev. 43, 491–494 (1933). doi:10.1103/PhysRev.43.491. http://link.aps.org/doi/10.1103/PhysRev.43.491

    Article  ADS  Google Scholar 

  2. A. Ayangeakaa, Exotic modes of collective excitations nuclear tidal waves and chirality. PhD thesis, University of Notre Dame (2013)

    Google Scholar 

  3. A. Baxter et al., Nucl. Instrum. Methods A 317 (1–2), 101–110 (1992). doi:http://dx.doi.org/10.1016/0168-9002(92)90597-W. http://www.sciencedirect.com/science/article/pii/016890029290597W

  4. C.W. Beausang, J. Simpson, J. Phys. G Nucl. Part. 22 (5), 527 (1996). doi:10.1088/0954-3899/ 22/5/003. http://dx.doi.org/10.1088/0954-3899/22/5/003

    Article  ADS  Google Scholar 

  5. D. Blumenthal, A study of cooling following compound nuclear reactions. PhD thesis, Yale (1994)

    Google Scholar 

  6. N. Bohr, Nature 137 (3461), 344–348 (1936). doi:10.1038/137344a0. http://dx.doi.org/10.1038/137344a0

    Article  ADS  Google Scholar 

  7. B. Borderie et al., Z. Phys. 299, 263 (1981)

    Article  ADS  Google Scholar 

  8. S. Botelho et al., Phys. Rev. C 58, 3726–3729 (1998). doi:10.1103/PhysRevC.58.3726. http://link.aps.org/doi/10.1103/PhysRevC.58.3726

    Article  ADS  Google Scholar 

  9. R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1–2), 81–86 (1997). doi:http://dx.doi.org/10.1016/S0168-9002(97)00048-X. http://www.sciencedirect.com/science/article/pii/S016890029700048X. New Computing Techniques in Physics Research V

  10. J. Cerny (ed.), Nuclear Spectroscopy and Reactions Part C (Academic, New York, 1974)

    Google Scholar 

  11. C.J. Chiara et al., Phys. Rev. C 75, 054305 (2007). doi:10.1103/PhysRevC.75.054305. http://link.aps.org/doi/10.1103/PhysRevC.75.054305

    Article  ADS  Google Scholar 

  12. S. Cohen, F. Plasil, W. Swiatecki, Ann. Phys. N. Y. 82 (2), 557–596 (1974). doi:http://dx.doi.org/10.1016/0003-4916(74)90126-2. http://www.sciencedirect.com/science/article/pii/0003491674901262

  13. A. Compton et al., Phys. Rev. 21, 483–502 (1923). doi:10.1103/PhysRev.21.483. http://link.aps.org/doi/10.1103/PhysRev.21.483

    Article  ADS  Google Scholar 

  14. M. Cromaz et al., Nucl. Instrum. Methods A 462 (3), 519–529 (2001). doi:http://dx.doi.org/10.1016/S0168-9002(00)01126-8. http://www.sciencedirect.com/science/article/pii/S0168900200011268

  15. M. Devlin et al., Nucl. Instrum. Methods A 383 (2–3), 506–512 (1996). doi:http://dx.doi.org/10.1016/S0168-9002(96)00857-1. http://www.sciencedirect.com/science/article/pii/S0168900296008571

  16. G. Duchêne et al., Nucl. Instrum. Methods A 432 (1), 90–110 (1999). doi:http://dx.doi.org/10.1016/S0168-9002(99)00277-6. http://www.sciencedirect.com/science/article/pii/S0168900299002776

  17. J. Eberth et al., Prog. Part. Nucl. Phys. 28 (0), 495–504 (1992). doi:http://dx.doi.org/10.1016/0146-6410(92)90051-3. http://www.sciencedirect.com/science/article/pii/0146641092900513

  18. A. Einstein, Ann. Phys. Berlin 322 (6), 132–148 (1905). doi:10.1002/andp.19053220607. http://dx.doi.org/10.1002/andp.19053220607

    Article  ADS  Google Scholar 

  19. A. Galindo-Uribarri et al., Phys. Rev. Lett. 71, 231–234 (1993). doi:10.1103/PhysRevLett.71. 231. http://link.aps.org/doi/10.1103/PhysRevLett.71.231

    Article  ADS  Google Scholar 

  20. A. Gavron, Phys. Rev. C 21, 230–236 (1980). doi:10.1103/PhysRevC.21.230. http://link.aps.org/doi/10.1103/PhysRevC.21.230

    Article  ADS  Google Scholar 

  21. J. Greene et al., J. Radioanal. Nucl. Chem. 299 (2), 1125–1128 (2014). doi:10.1007/s10967-013-2675-8. http://dx.doi.org/10.1007/s10967-013-2675-8

    Article  Google Scholar 

  22. W. Hamilton (ed.), The Electromagnetic Interaction in Nuclear Spectroscopy (North-Holland, Amsterdam, 1972)

    Google Scholar 

  23. B. Herskind et al., Phys. Scr. 2006 (T125), 108 (2006). http://stacks.iop.org/1402-4896/2006/i=T125/a=025

    Article  Google Scholar 

  24. C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 1 (2), 279–421 (1972). doi:http://dx.doi.org/10.1063/1.3253100. http://scitation.aip.org/content/aip/journal/jpcrd/1/2/10.1063/1.3253100

  25. V. Iacob, G. Duchêne, Nucl. Instrum. Methods A 399 (1), 57–64 (1997). doi:http://dx.doi.org/10.1016/S0168-9002(97)00872-3. http://www.sciencedirect.com/science/article/pii/S0168900297008723

  26. C.A. Klein, IEEE Trans. Nucl. Sci. 15 (3), 214–225 (1968). doi:10.1109/TNS.1968.4324940

    Article  ADS  Google Scholar 

  27. G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 2000)

    Google Scholar 

  28. A. Krämer-Flecken et al., Nucl. Instrum. Methods A 275 (2), 333–339 (1989). doi:http://dx.doi.org/10.1016/0168-9002(89)90706-7. http://www.sciencedirect.com/science/article/pii/0168900289907067

  29. K.S. Krane, Atom. Data Nucl. Data 11 (5), 407–431 (1973). doi:http://dx.doi.org/10.1016/S0092-640X(73)80017-8. http://www.sciencedirect.com/science/article/pii/S0092640X73800178

  30. K. Krane, R. Steffen, R. Wheeler, Atom. Data Nucl. Data 11 (5), 351–406 (1973). doi:http://dx.doi.org/10.1016/S0092-640X(73)80016-6. http://www.sciencedirect.com/science/article/pii/S0092640X73800166

  31. I.-Y. Lee, Nucl. Phys. A 520 (0), c641–c655 (1990). doi:http://dx.doi.org/10.1016/0375-9474(90)91181-P. http://www.sciencedirect.com/science/article/pii/037594749091181P. Nuclear Structure in the Nineties

  32. S. Muralithar et al., Nucl. Instrum. Methods A 622 (1), 281–287 (2010). doi:http://dx.doi.org/10.1016/j.nima.2010.06.200. http://www.sciencedirect.com/science/article/pii/S0168900210013902

  33. P.J. Nolan, F.A. Beck, D.B. Fossan, Annu. Rev. Nucl. Part. Sci. 44 (1), 561–607 (1994). doi:10.1146/annurev.ns.44.120194.003021

    Article  ADS  Google Scholar 

  34. J.R. Oppenheimer, M.S. Plesset, Phys. Rev. 44, 53–55 (1933). doi:10.1103/PhysRev.44.53.2. http://link.aps.org/doi/10.1103/PhysRev.44.53.2

    Article  ADS  Google Scholar 

  35. R. Palit et al., Nucl. Instrum. Methods A 680 (0), 90–96 (2012). doi:http://dx.doi.org/10.1016/j.nima.2012.03.046. http://www.sciencedirect.com/science/article/pii/S0168900212003476

  36. E.S. Paul et al., Phys. Rev. C 84, 047302 (2011). doi:10.1103/PhysRevC.84.047302. http://link.aps.org/doi/10.1103/PhysRevC.84.047302

    Article  ADS  Google Scholar 

  37. R. Prasad et al., J. Chem. Thermodyn. 11 (10), 963–970 (1979). doi:http://dx.doi.org/10.1016/0021-9614(79)90045-4. http://www.sciencedirect.com/science/article/pii/0021961479900454

  38. D. Radford, Nucl. Instrum. Methods A 361 (1–2), 297–305 (1995). doi:http://dx.doi.org/10.1016/0168-9002(95)00183-2. http://www.sciencedirect.com/science/article/pii/0168900295001832

  39. D. Radford, Nucl. Instrum. Methods A 361 (1–2), 306–316 (1995). doi:http://dx.doi.org/10.1016/0168-9002(95)00184-0. http://www.sciencedirect.com/science/article/pii/0168900295001840

  40. T. Raudorf, R. Pehl, Nucl. Instrum. Methods A 255 (3), 538–551 (1987). doi:http://dx.doi.org/10.1016/0168-9002(87)91225-3. http://www.sciencedirect.com/science/article/pii/0168900287912253

  41. M. Riley et al., Gammasphere online booklet, http://nucalf.physics.fsu.edu/~riley/gamma/. Accessed 15 July 2015

  42. T.M. Semkow et al., Phys. Rev. C 34, 523–535 (1986). doi:10.1103/PhysRevC.34.523. http://link.aps.org/doi/10.1103/PhysRevC.34.523

    Article  ADS  Google Scholar 

  43. B. Singh, J. Waddington, j π and multipolarity assignments in (hi, xnypz α γ reactions, http://www.nndc.bnl.gov/nndc/evalcorner/hijpi.pdf. Accessed 15 July 2015

  44. K. Starosta et al., Nucl. Instrum. Methods A 423 (1), 16–26 (1999). doi:http://dx.doi.org/10.1016/S0168-9002(98)01220-0. http://www.sciencedirect.com/science/article/pii/S0168900298012200

  45. K. Starosta et al., Nucl. Instrum. Methods A 515 (3), 771–781 (2003). doi:http://dx.doi.org/10.1016/j.nima.2003.07.008. http://www.sciencedirect.com/science/article/pii/S0168900203023131

  46. O. Tarasov, D. Bazin, Nucl. Instrum. Methods A 204 (0), 174–178 (2003). doi:http://dx.doi.org/10.1016/S0168-583X(02)01917-1. http://www.sciencedirect.com/science/article/pii/S0168583X02019171. 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications

  47. T. Yamazaki, Nucl. Data Sheets Sect. A 3 (1), 1–23 (1967). doi:http://dx.doi.org/10.1016/S0550-306X(67)80002-8. http://www.sciencedirect.com/science/article/pii/S0550306X67800028

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Matta, J.T. (2017). Experimental Methods. In: Exotic Nuclear Excitations: The Transverse Wobbling Mode in 135 Pr. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53240-0_3

Download citation

Publish with us

Policies and ethics