Skip to main content

Mathematical Objects, Definitions, Diagrams

  • Chapter
  • First Online:
Rethinking Knowledge

Part of the book series: European Studies in Philosophy of Science ((ESPS,volume 4))

  • 518 Accesses

Abstract

The aim of this chapter is to give answer to the question: What is mathematics about? The chapter maintains that, being problem solving by the analytic method, mathematics is about objects which are hypotheses human beings make to solve mathematical problems. Therefore, mathematical objects exist only in the minds of the mathematicians who hypothesize them, and in the minds of the people who make use of them. Like mathematical objects, the mathematical definitions by which mathematical objects are introduced are hypotheses human beings make to solve mathematical problems by the analytic method. Mathematical diagrams also fit in the analytic method, since they are important tools to solve problems by that method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archimedes. 2013. Opera omnia. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ayer, Alfred Jules. 1990. Language, truth and logic. London: Penguin Books.

    Google Scholar 

  • Barwise, Jon, and John Etchemendy. 1996. Visual information and valid reasoning. In Logical reasoning with diagrams, ed. Gerard Allwein and Jon Barwise, 3–25. Oxford: Oxford University Press.

    Google Scholar 

  • Brannon, Elizabeth. 2005. The independence of language and mathematical reasoning. Proceedings of the National Academy of Sciences of the United States of America 102: 3177–3178.

    Article  Google Scholar 

  • Brouwer, Luitzen Egbertus. Jan. 1975. Collected works. Vol. 1. Amsterdam: North-Holland.

    Google Scholar 

  • Cellucci, Carlo. 2013a. Rethinking logic: Logic in relation to mathematics, evolution, and method. Dordrecht: Springer.

    Book  Google Scholar 

  • ———. 2013b. Top-down and bottom-up philosophy of mathematics. Foundations of Science 18: 93–106.

    Article  Google Scholar 

  • Descartes, René. 1996. Oeuvres. Paris: Vrin.

    Google Scholar 

  • Dieudonné, Jean. 1969. Foundations of modern analysis. New York: Academic Press.

    Google Scholar 

  • Field, Hartree. 1980. Science without numbers. Oxford: Blackwell.

    Google Scholar 

  • ———. 1989. Realism, mathematics and modality. Oxford: Blackwell.

    Google Scholar 

  • Frege, Gottlob. 1967. Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought. In From Frege to Gödel: A source book in mathematical logic, 1879–1931, ed. Jean van Heijenoort, 5–82. Cambridge: Harvard University Press.

    Google Scholar 

  • ———. 1979. Posthumous writings. Oxford: Blackwell.

    Google Scholar 

  • Giaquinto, Marcus. 2008. Visualizing in mathematics. In The philosophy of mathematical practice, ed. Paolo Mancosu, 22–42. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Giusti, Enrico. 1980. Bonaventura Cavalieri and the theory of indivisibles. Rome: Cremonese.

    Google Scholar 

  • Gödel, Kurt. 1986–2002. Collected works. Oxford: Oxford University Press.

    Google Scholar 

  • Grabiner, Judith. 1983. The changing concept of change: The derivative from Fermat to Weierstrass. Mathematics Magazine 56: 195–206.

    Article  Google Scholar 

  • Grosholz, Emily. 1992. Was Leibniz a mathematical revolutionary? In Revolutions in mathematics, ed. Donald Gillies, 117–133. Oxford: Oxford University Press.

    Google Scholar 

  • ———. 2000. The partial unification of domains, hybrids, and the growth of mathematical knowledge. In The growth of mathematical knowledge, ed. Emily Grosholz and Herbert Breger, 81–91. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hart, Wilbur Dyre. 1996. Introduction. In The philosophy of mathematics, ed. Wilbur Dyre Hart, 1–13. Oxford: Oxford University Press.

    Google Scholar 

  • Hersh, Reuben. 2014. Experiencing mathematics: What do we do, when we do mathematics? Providence: American Mathematical Society.

    Google Scholar 

  • Hilbert, David. 1987. Grundlagen der Geometrie. Stuttgart: Teubner.

    Google Scholar 

  • ———. 2004a. Die Grundlagen der Geometrie. In David Hilbert’s lectures on the foundations of geometry 1891–1902, ed. Michael Hallett and Ulrich Majer, 72–123. Berlin: Springer.

    Google Scholar 

  • ———. 2004c. Grundlagen der Geometrie. In David Hilbert’s lectures on the foundations of geometry 1891–1902, ed. Michael Hallett and Ulrich Majer, 540–602. Berlin: Springer.

    Google Scholar 

  • Hilbert, David, and Paul Bernays. 1968–1970. Grundlagen der Mathematik. Berlin: Springer.

    Book  Google Scholar 

  • Hume, David. 1975. Enquiries concerning human understanding and concerning the principles of morals. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Kant, Immanuel. 1900–. Gesammelte Schriften (Akademie Aausgabe). Berlin: Königlich Preußischen Akademie der Wissenschaften.

    Google Scholar 

  • ———. 1992. Lectures on logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • ———. 1998. Critique of pure reason. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Locke, John. 1975. An essay concerning human understanding. Oxford: Oxford University Press.

    Google Scholar 

  • Mancosu, Paolo. 2008. Introduction. In The philosophy of mathematical practice, ed. Paolo Mancosu, 1–21. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Nelsen, Roger B. 1993. Proofs without words: Exercises in visual thinking. Washington: The Mathematical Association of America.

    Google Scholar 

  • Pascal, Blaise. 1904–1914. Oeuvres. Paris: Hachette.

    Google Scholar 

  • Peano, Giuseppe. 1973. Definitions in mathematics. In Giuseppe Peano, Selected works, 235–246. London: Allen & Unwin.

    Google Scholar 

  • Peirce, Charles Sanders. 1931–1958. Collected papers. Cambridge: Harvard University Press.

    Google Scholar 

  • Proclus. 1992. In primum Euclidis Elementorum librum commentarii. Hildesheim: Olms.

    Google Scholar 

  • Russell, Bertrand. 1920. Introduction to mathematical philosophy. London: Allen & Unwin.

    Google Scholar 

  • Senechal, Marjorie. 1998. The continuing silence of Bourbaki – An interview with Pierre Cartier. The Mathematical Intelligencer 20 (1)22–28.

    Article  Google Scholar 

  • Shapiro, Stewart. 1983. Conservativeness and incompleteness. The Journal of Philosophy 80: 521–531.

    Article  Google Scholar 

  • Suppes, Patrick. 1972. Axiomatic set theory. Mineola: Dover.

    Google Scholar 

  • Tennant, Neil. 1986. The withering away of formal semantics? Mind and Language 1: 302–318.

    Article  Google Scholar 

  • Vaihinger, Hans. 2008. The philosophy of ‘as if’. London: Routledge.

    Google Scholar 

  • von Neumann, John. 1955. Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Wang, Hao. 1996. A logical journey: From Gödel to philosophy. Cambridge: The MIT Press.

    Google Scholar 

  • Weyl, Hermann. 1950. The theory of groups and quantum mechanics. Mineola: Dover.

    Google Scholar 

  • Whitehead, Alfred North, and Bertrand Russell. 1925–1927. Principia mathematica. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cellucci, C. (2017). Mathematical Objects, Definitions, Diagrams. In: Rethinking Knowledge. European Studies in Philosophy of Science, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-53237-0_19

Download citation

Publish with us

Policies and ethics