Skip to main content

The Impact of IGRT on Normal Tissue Toxicity

  • Chapter
  • First Online:
Book cover Advances in Radiation Oncology

Part of the book series: Cancer Treatment and Research ((CTAR))

Abstract

Image Guided Radiation Therapy (IGRT) deploys advanced imaging techniques prior to each treatment to ensure the highest possible agreement between the planned treatment geometry and the daily set-up. This agreement includes both the patient position and the localization of the internal target and normal structures. This process reduces non-tumor tissues within the target volume to a minimum. IGRT is now commonly accompanied by altered fractionation schemes, usually hypofractionation. With the small-volume, high-dose-per-fraction treatments, the profile of treatment morbidities may change, compared to conventional 3D treatment. This chapter explores how these morbidities may change with the use of IGRT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only recently has de-escalation of target dose become a serious line of investigation in radiation oncology.

  2. 2.

    In this chapter, IGRT will be assumed to include daily volumetric imaging prior to treatment. Early definitions of IGRT included multimodality imaging to define better the target volume. In this chapter, we will consider only the impact of daily imaging on NT responses. In IGRT like in quantum mechanics, we assume you know where something is only when you look for it.

References

  • Brown JM, Carlson DJ, Brenner DJ (2014) The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 88:254–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung HT, Xia P, Chan LW et al (2009) Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys 73:53–60

    Article  PubMed  Google Scholar 

  • Dawson LA, Normolle D, Balter JM et al (2002) Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 53:810–821

    Article  PubMed  Google Scholar 

  • Greco C, Zelefsky MJ, Lovelock M et al (2011) Predictors of local control after single-dose stereotactic image-guided. Intensity-modulated radiotherapy for extracranial metastases. Int J Radiat Oncol Biol Phys 79:1151–1157

    Article  PubMed  Google Scholar 

  • Han C, Schiffner DC, Schultheiss TE et al (2012) Residual setup errors and dose variations with less-than-daily image guided patient setup in external beam radiotherapy for esophageal cancer. Radioth Oncol 102:309–314

    Article  Google Scholar 

  • Hellevik T, Martinez-Zubiaurre I (2014) Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front Oncol 4:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • International Commission on Radiation Units and Measurements: ICRU Report 50 (1993) Prescribing, recording and reporting photon beam therapy Prescribing, Recording and Reporting Photon Beam Therapy, Bethesda

    Google Scholar 

  • Jackson A, Kutcher GJ (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20:613–625

    Article  CAS  PubMed  Google Scholar 

  • Jackson A, Ten Haken RK, Robertson JM et al (1995) Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 31:883–891

    Article  CAS  PubMed  Google Scholar 

  • King CR, Brooks JD, Gill H et al (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase ii clinical trial. Int J Radiat Oncol Biol Phys 73:1043–1048

    Article  PubMed  Google Scholar 

  • Kollar L, Rengan R (2014) Stereotactic body radiotherapy. Semin Oncol 41:776–789

    Article  PubMed  Google Scholar 

  • Lattanzi J, Mcneeley S, Pinover W et al (1999) A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys 43:719–725

    Article  CAS  PubMed  Google Scholar 

  • Lattanzi J, Mcneely S, Hanlon A et al (1998) Daily CT localization for correcting portal errors in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 41:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Lawrence TS, Robertson JM, Anscher MS et al (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31:1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Mackie TR, Holmes TW, Reckwerdt PJ et al (1995) Tomotherapy: optimized planning and delivery of radiation therapy. Int J Imaging Syst Technol 6:43–55

    Article  Google Scholar 

  • Madsen BL, Hsi RA, Pham HT et al (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP) 335 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 67:1099–1105

    Article  PubMed  Google Scholar 

  • Michalski JM, Purdy JA, Winter K et al (2000) Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int J Radiat Oncol Biol Phys 46:391–402

    Article  CAS  PubMed  Google Scholar 

  • Overgaard J, Hjelm-Hansen M, Johansen LV et al (1988) Comparison of conventional and Split-course radiotherapy as primary treatment in carcinoma of the larynx. Acta Oncol 27:147–152

    Article  CAS  PubMed  Google Scholar 

  • Owen R, Kron T, Foroudi F et al (2009) Comparison of CT on rails with electronic portal imaging for positioning of prostate cancer patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 74:906–912

    Article  PubMed  Google Scholar 

  • Parsons JT, Bova FJ, Million RR (1980) A re-evaluation of split-course technique for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 6:1645–1652

    Article  CAS  PubMed  Google Scholar 

  • Pollack A, Walker G, Horwitz EM et al (2013) Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clini Oncol 31:3860–3868

    Article  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim MS, Cho LC et al (2014) Radiobiological basis of SBRT and SRS. Int J Clin Oncol 19:570–578

    Article  CAS  PubMed  Google Scholar 

  • Tucker SL, Liao ZX, Travis EL (1997) Estimation of the spatial distribution of target cells for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 38:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • van der Veen SJ, Faber H, Ghobadi G et al (2016) Decreasing irradiated rat lung volume changes dose-limiting toxicity from early to late effects. Int J Radiat Oncol Biol Phys 94:163–171

    Article  PubMed  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    Article  CAS  PubMed  Google Scholar 

  • Wu JSY, Brasher PMA, El-Gayed A et al (2012) Phase II study of hypofractionated image-guided radiotherapy for localized prostate cancer: outcomes of 55 Gy in 16 fractions at 34 Gy per fraction. Radioth Oncol 103:210–216

    Article  Google Scholar 

  • Yang JN, Mackie TR, Reckwerdt P et al (1997) An investigation of tomotherapy beam delivery. Med Phys 24:425–436

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Baik C, Bhatia S et al (2014) Combination of stereotactic ablative body radiation with targeted therapies. Lancet Oncol 15:e426–e434

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Schultheiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schultheiss, T.E. (2017). The Impact of IGRT on Normal Tissue Toxicity. In: Wong, J., Schultheiss, T., Radany, E. (eds) Advances in Radiation Oncology. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53235-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53235-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53233-2

  • Online ISBN: 978-3-319-53235-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics