Skip to main content

The Mammalian DNA Damage Response as a Target for Therapeutic Gain in Radiation Oncology

  • Chapter
  • First Online:
Book cover Advances in Radiation Oncology

Part of the book series: Cancer Treatment and Research ((CTAR))

  • 1451 Accesses

Abstract

Mutant cells that are defective for certain components of the mammalian DNA damage response (DDR) have been shown to display hypersensitivity to killing by ionizing radiations; these findings have prompted the idea that drugs that emulate these DDR deficiencies might serve as clinically useful radiosensitizers for improving results in cancer therapy. In this chapter, the ways in which several agents now established as radiosensitizers do in fact function by inhibiting parts of the DDR are first presented. The various subsystems of the DDR are next reviewed, and several potential molecular targets for discovery or design of chemical modifiers that could lead novel radiosensitizing drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ (2007) HDAC inhibitor PCI-24781 decreased RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA 104:19482–19487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Ubaidi FL, Schultz N, Loseva O, Egevad L, Granfors T, Helleday T (2013) Castration therapy results in decreased Ku70 levels in prostate cancer. Clin Cancer Res 19:1547–1556

    Google Scholar 

  • Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62:7350–7356

    CAS  PubMed  Google Scholar 

  • Balcer-Kubiczek EK (2012) Apoptosis in radiation therapy: a double-edged sword. Exp Oncol 34:277–285

    CAS  PubMed  Google Scholar 

  • Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nature Rev Cancer 11:239–253

    Article  CAS  Google Scholar 

  • Bobber JA, Harari PM, Giralt J, Cohen RB, Jones CU et al (2010) Radiotherapy plus Cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomized trial, and relation between Cetuximab-induced rash and survival. Lancet Oncol 11:21–28

    Article  Google Scholar 

  • Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997

    Google Scholar 

  • Budke B, Kalin JH, Pawlowski M, Zelivianskaia AS, Wu M et al (2013) An optimized RAD51 inhibitor that disrupts homologous recombination without requiring Michael acceptor reactivity. J Med Chem 56:254–263

    Article  CAS  PubMed  Google Scholar 

  • Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB et al (2004) Enhanced radiation enhanced-induced killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 64:316–321

    Google Scholar 

  • Canman CE, Radany EH, Parsels LA, Davis MA, Lawrence TS, Maybaum J (1994) Cancer Res 54:2296–2298

    CAS  PubMed  Google Scholar 

  • Ceccacci E, Minucci S (2016) Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 114:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–63

    Article  CAS  PubMed  Google Scholar 

  • Cengel KA, Voong KR, Chandrasekaran S, Maggiorella L, Brunner TB, Stanbridge E et al (2007) Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells. Neoplasia 9:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wong P, Radany E, Wong JY (2009) HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 24:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wong JYC, Wong P, Radany EH (2011) Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol Cancer Res 9:448–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY (2012) Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res 10:1052–1064

    Article  CAS  PubMed  Google Scholar 

  • Cheung M, Testa JR (2013) Diverse mechanisms of AKT pathway activation inhuman malignancy. Curr Cancer Drug Targets 13:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnaiyan P, Cerna D, Burgan WE, Beam K, Williams ES et al (2008) Postradiation sensitization by the histone deacetylase inhibitor valproic acid. Clin Cancer Res 14:5410–5415

    Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD et al (2002) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    Article  Google Scholar 

  • Citrin DE, Mitchell JB (2014) Altering the response to radiation: sensitizers and protectors. Semin Oncol 41:848–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin N (2012) J DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817

    Article  CAS  PubMed  Google Scholar 

  • Dassonville O, Bozec A, Fischel JL, Milano G (2007) EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit Rev Oncol Hematol 62:53–61

    Google Scholar 

  • Dewey WC (2009) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 23:3–20

    Article  Google Scholar 

  • Diggle CP, Bentley J, Knowles MA, Kiltie AE (2005) Inhibition of double-strand break non-homologous end joining by cisplatin adducts in human cell extracts. Nucleic Acids Res 33:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dynlacht JR, Batuello CN, Lopez JT, Kim KK, Turchi JJ (2011) Identification of Mre11 as a target for heat radiosensitization. Radiat Res 176:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA et al (2015) Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 59:867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Laguna I, Hong DS, Janku F, Nguyen LM, Falchook GS, Fu S et al (2012) KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors. PLoS ONE 7:e38033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavande NS, Vandervere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR et al (2016) DNA repair targeted therapy: the past or future of cancer treatment? Pharmcol Ther 160:65–83

    Article  CAS  Google Scholar 

  • Goodarzi AA, Jeggo PA (2013) The repair and signaling responses to DNA double-strand breks. AnvGenet 82:1–45

    CAS  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumor cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  • Higgins GS, O’Cathail SM, Muschel RJ, McKenna WG (2015) Drug radiotherapy combinations: review of previous failures and reasons for future optimism. Cancer Treat Rev 41:105–113

    Article  PubMed  Google Scholar 

  • Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV (2011) Identification of specific inhibitors of human RAD51 recombinase using high throughput screening. ACS Chem Biol 6:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SP (2009) Bartek J The DNA damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeggo PA, Lobrich M (2015) How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 471:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ (2014) Chemotherapeutic compounds targeting the DNA double strand break repair pathways. Front Oncol 4:1–18

    Article  Google Scholar 

  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282:21206–21212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb LA (2016) Human cancers express a mutator phenotype: hypothesis, origin, and consequences. Cancer Res 76:2057–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckenna WG, Muchel RJ, Gupta AK, Hahn SM, Bernhard EJ (2003) The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 22:5866–5875

    Article  CAS  PubMed  Google Scholar 

  • Mellert HS, Stanek TJ, Sykes SM, Rauscher FJ, Schultz DC, McMahon SB (2011) Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem 286:4264–4270

    Article  CAS  PubMed  Google Scholar 

  • Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MA, Lawrecne TS (2015) Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res 21:2898–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura JL (2007) The epidermal growth factor receptor in malignant gliomas: pathogenesis and therapeutic implications. Expert Opin Ther Targets 11:463–472

    Article  CAS  PubMed  Google Scholar 

  • Nijkamp MM, Hoogsteen IJ, Span PN, Takes RP, Lok J, Rijken PF et al (2011) Spatial relationship of phosphorylated epidermal growth factor receptor and activated AKT in head and neck squamous cell carcinoma. Radiother Oncol 101:165–170

    Article  CAS  PubMed  Google Scholar 

  • Pannunzio NR, Li S, Watanabe G, Lieber MR (2014) NHEJ often uses microhomology: implications for alternative end joining. DNA Repair 17:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Feng J, Li Y, Hammarsten O, Brazil DP, Hemmings BA (2009) DNA-dependent protein kinase-mediated phosphorylation of protein kinase B requires a specific recognition sequence in the C-terminal hydrophobic motif. J Biol Chem 284:6169–6174

    Article  CAS  PubMed  Google Scholar 

  • Raaphorst GPGP, Leblanc J-M, Li LF (2005) A comparison of response to cisplatin, radiation and combined treatment for cells deficient in recombination repair pathways. Anticancer Res 25:3–58

    Google Scholar 

  • Raleigh DR, Haas-Kogan DA (2013) Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 9:219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjiv K, Hagenkort A, Calderon-Montano JM, Koolmeister T, Reaper PM et al (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Reports 14:298–309

    Google Scholar 

  • Sears CR, Turchi JJ (2012) Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end joining (NHEJ) independent of downstream damage response (DDR) pathways. J Biol Chem 287:24263–24272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CR, Cooney SA, Chin-Sinex H, Mendoca MS, Turchi JJ (2016) DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair 40:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhar KR, Reddy YT, Reddy PN, Crooks PA, Venkateswaran A, McDonald WH, et al (2011) The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization. Clin Cancer Res 17:6490–6499

    Google Scholar 

  • Seno JD, Dynlacht JR (2004) Intracellular redistribution and phosphorylation of proteins of the Mre11/Rad50/Nbs1 repair complex following irradiation and heat shock. J Cell Physiol 199:157–170

    Article  CAS  PubMed  Google Scholar 

  • Seshacharyulu P, Ponnusamy MP, Harida D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewach DS, Lawrence TS (1995) Radiosensitization of human tumor cells by gemcitabine in vitro. Semin Oncol 22:68–71

    CAS  PubMed  Google Scholar 

  • Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois M-M, Maity R et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18

    Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R et al (2006) Acetylation of the p53 DNA binding domain regulates apoptosis induction. Mol Cell 24:841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanno S, Yanagawa N, Habiro A, Koizumi K, Nakano Y, Osanai M et al (2004) Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res 64:3486–3490

    Article  CAS  PubMed  Google Scholar 

  • Tarish FL, Schultz N, Tanoglidi A, Hamberg H, Letocha H et al (2015) Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair. Science Trans Med 7:1–6

    Article  Google Scholar 

  • Thijssen R, Ter Burg J, Garrick B, van Bochove GG, Brown JR et al (2016) Dual TORK/DNA-PK inhibition blocks critical signaling pathways in chronic lymphocytic leukemia. Blood 128:574–583

    Article  CAS  PubMed  Google Scholar 

  • Toulany M, Roderman HP (2015) Phosphatidylinositol 3-kinase/Akt signaling as a key mediation of tumor cell responsiveness to radiation. Semin Can Biol 35:180–190

    Article  CAS  Google Scholar 

  • Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J et al (2008) Targeting ofAKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 7:1772–1781

    Article  CAS  PubMed  Google Scholar 

  • Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M et al (2012) Akt1promotes post-irradiation survival of human tumor cells through initiation, progression and termination of DNA-PKcs-dependent DNA-double strand break repair. Mol Cancer Res 10:945–957

    Article  CAS  PubMed  Google Scholar 

  • Van Putten JW, Groen HJ, Smid K et al (2001) End-joining deficiency and radiosensitization by gemcitabine. Cancer Ras 61:1585–1591

    Google Scholar 

  • Wachters FM, Van Putten JW, Maring JG, Zdzienicka MZ, Grown HJ, Kampinga HH (2001) Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Rad Oncol Biol Phys 57:553–562

    Article  Google Scholar 

  • Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA (2014) Nonhomologous end joining: a good solution for bad ends. DNA Repair 17:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg R, Hanahan D (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M-h, Sun H-t, Xu J-g, Gang Y, Lei-ming H et al (2016) Combining whole brain radiotherapy with Gefitinib/Erlotinib for brain metastases from non-small-cell lung cancer: a meta analysis. RioMed Res Int 2016:5807346

    Google Scholar 

  • Zhu J, Zhou L, Wu G, Konig H, Lin S et al (2013) A novel small molecule RAD51 inactivator overcomes imatinib resistance in chronic myeloid leukaemia. EMBO Mol Med 5:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Radany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Radany, E.H. (2017). The Mammalian DNA Damage Response as a Target for Therapeutic Gain in Radiation Oncology. In: Wong, J., Schultheiss, T., Radany, E. (eds) Advances in Radiation Oncology. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53235-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53235-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53233-2

  • Online ISBN: 978-3-319-53235-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics