Skip to main content

Biomarkers and Radiotherapy

  • Chapter
  • First Online:
Advances in Radiation Oncology

Part of the book series: Cancer Treatment and Research ((CTAR))

  • 1503 Accesses

Abstract

For a biomarker to be clinically useful there must be adequate preclinical data and have prevalence in the disease of interest. Early research focused on molecules implicated in the cell cycle, DNA repair pathways, and apoptosis as radiation is known to affect such pathways. More recent data has focused on big data, i.e.—omics (genomics, proteomics, etc.) to find a molecular signature that predicts response to radiation as well as identify those who may have increased risk of radiation induced toxicities. While many potential biomarkers in assessing radiation response have been researched this chapter is a start to providing information on biomarkers used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KA et al (2015) The radiosensitivity index predicts for overall survival in glioblastoma. Oncotarget 6(33):34414–34422

    PubMed  PubMed Central  Google Scholar 

  • Andreassen CN et al (2016) Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol

    Google Scholar 

  • Ang KK, Sturgis EM (2012) Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol 22(2):128–142

    Article  PubMed  Google Scholar 

  • Ang KK et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363(1):24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley JD et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerciello F et al (2007) Is EGFR a moving target during radiotherapy of carcinoma of the uterine cervix? Gynecol Oncol 106(2):394–399

    Article  CAS  PubMed  Google Scholar 

  • Chau NG, Rabinowits G, Haddad RI (2014) Human papillomavirus-associated oropharynx cancer (HPV-OPC): treatment options. Curr Treat Options Oncol 15(4):595–610

    Article  PubMed  Google Scholar 

  • Den RB et al (2014) Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 89(5):1038–1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng G et al (2016) Elevated serum granulocyte-macrophage colony-stimulating factor levels during radiotherapy predict favorable outcomes in lung and esophageal cancer. Oncotarget

    Google Scholar 

  • Dinh TK et al (2016) Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiat Oncol 11:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksen JG et al (2004) The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 58(2):561–566

    Article  CAS  PubMed  Google Scholar 

  • Eriksen JG et al (2005) The possible role of TP53 mutation status in the treatment of squamous cell carcinomas of the head and neck (HNSCC) with radiotherapy with different overall treatment times. Radiother Oncol 76(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Eschrich SA et al (2009) A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys 75(2):489–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdousi J et al (2010) Impact of human papillomavirus genotype on response to treatment and survival in patients receiving radiotherapy for squamous cell carcinoma of the cervix. Exp Ther Med 1(3):525–530

    PubMed  PubMed Central  Google Scholar 

  • Grignon DJ et al (1997) p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst 89(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Guerra JL et al (2012) Association between single nucleotide polymorphisms of the transforming growth factor β1 gene and the risk of severe radiation esophagitis in patients with lung cancer. Radiother Oncol 105(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • Herrlinger U et al (2016) Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol

    Google Scholar 

  • Ho AY et al (2007) Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 69(3):677–684

    Article  PubMed  Google Scholar 

  • Hong A et al (2010) Relationships between epidermal growth factor receptor expression and human papillomavirus status as markers of prognosis in oropharyngeal cancer. Eur J Cancer 46(11):2088–2096

    Article  CAS  PubMed  Google Scholar 

  • Kabarriti R et al (2014) Prostate-specific antigen decline during salvage radiation therapy following prostatectomy is associated with reduced biochemical failure. Pract Radiat Oncol 4(6):409–414

    Article  PubMed  Google Scholar 

  • Kan Z et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466(7308):869–873

    Article  CAS  PubMed  Google Scholar 

  • Kerns SL et al (2010) Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 78(5):1292–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY et al (2009) The TGF-beta1 dynamics during radiation therapy and its correlation to symptomatic radiation pneumonitis in lung cancer patients. Radiat Oncol 4:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Koukourakis MI et al (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24(5):727–735

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI et al (2016) Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol 92(7):353–363

    Article  CAS  PubMed  Google Scholar 

  • Kyndi M et al (2008) Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish breast cancer cooperative group. J Clin Oncol 26(9):1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Langlands FE et al (2013) Breast cancer subtypes: response to radiotherapy and potential radiosensitisation. Br J Radiol 86(1023):20120601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlands FE et al (2014) PSMD9 expression predicts radiotherapy response in breast cancer. Mol Cancer 13:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassen P et al (2011) The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial. Radiother Oncol 100(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Lassen P, Overgaard J, Eriksen JG (2013) Expression of EGFR and HPV-associated p16 in oropharyngeal carcinoma: correlation and influence on prognosis after radiotherapy in the randomized DAHANCA 5 and 7 trials. Radiother Oncol 108(3):489–494

    Article  CAS  PubMed  Google Scholar 

  • Lassen P et al (2014) Impact of HPV-associated p16-expression on radiotherapy outcome in advanced oropharynx and non-oropharynx cancer. Radiother Oncol 113(3):310–316

    Article  PubMed  Google Scholar 

  • Lau HY et al (2011) Prognostic significance of p16 in locally advanced squamous cell carcinoma of the head and neck treated with concurrent cisplatin and radiotherapy. Head Neck 33(2):251–256

    Article  PubMed  Google Scholar 

  • Lee YS et al (2015) Composition of inflammatory cells regulating the response to concurrent chemoradiation therapy for HPV (+) tonsil cancer. Oral Oncol 51(12):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2015) Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study. Onco Targets Ther 8:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra MV, Showalter TN, Dicker AP (2012) Biomarkers of aging and radiation therapy tailored to the elderly: future of the field. Semin Radiat Oncol 22(4):334–338

    Article  PubMed  Google Scholar 

  • Mumbrekar KD et al (2016) Genetic variants in CD44 and MAT1A confer susceptibility to acute skin reaction in breast cancer patients undergoing radiation therapy. Int J Radiat Oncol Biol Phys

    Google Scholar 

  • Overgaard J et al (2005) Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6(10):757–764

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Regadera J et al (2011) Impact of epidermal growth factor receptor expression on disease-free survival and rate of pelvic relapse in patients with advanced cancer of the cervix treated with chemoradiotherapy. Am J Clin Oncol 34(4):395–400

    Article  PubMed  Google Scholar 

  • Petrik D et al (2006) Plasma osteopontin is an independent prognostic marker for head and neck cancers. J Clin Oncol 24(33):5291–5297

    Article  CAS  PubMed  Google Scholar 

  • Pikor LA et al (2013) Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82(2):179–189

    Article  PubMed  Google Scholar 

  • Pollack A et al (2004) Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: radiation therapy oncology group trial 92-02. J Clin Oncol 22(11):2133–2140

    Article  CAS  PubMed  Google Scholar 

  • Qin C et al (2014) Factors associated with radiosensitivity of cervical cancer. Anticancer Res 34(9):4649–4656

    CAS  PubMed  Google Scholar 

  • Quon H et al (2013) Transoral robotic surgery and adjuvant therapy for oropharyngeal carcinomas and the influence of p16 INK4a on treatment outcomes. Laryngoscope 123(3):635–640

    Article  PubMed  Google Scholar 

  • Ritter MA et al (2002) The role of p53 in radiation therapy outcomes for favorable-to-intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 53(3):574–580

    Article  CAS  PubMed  Google Scholar 

  • Rivera AL et al (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12(2):116–121

    Article  CAS  PubMed  Google Scholar 

  • Rübe CE et al (2008) Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS ONE 3(8):e2898

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherr DS et al (1999) BCL-2 and p 53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 162(1):12–16; discussion 16–7

    Google Scholar 

  • Shao J et al (2016) Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol Med Rep

    Google Scholar 

  • Song YJ et al (2011) Persistent human papillomavirus DNA is associated with local recurrence after radiotherapy of uterine cervical cancer. Int J Cancer 129(4):896–902

    Article  CAS  PubMed  Google Scholar 

  • Speers C et al (2016) Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin Cancer Res

    Google Scholar 

  • Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau BJ et al (2015) Gene expression characterization of HPV positive head and neck cancer to predict response to chemoradiation. Head Neck Pathol 9(3):345–353

    Article  PubMed  Google Scholar 

  • Tribius S, Pidel A, Casper D (2001) ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int J Radiat Oncol Biol Phys 50(2):511–523

    Article  CAS  PubMed  Google Scholar 

  • Vainshtein JM et al (2014) Refining risk stratification for locoregional failure after chemoradiotherapy in human papillomavirus-associated oropharyngeal cancer. Oral Oncol 50(5):513–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker MJ et al (2015) Discovery and validation of predictive biomarkers of survival for non-small cell lung cancer patients undergoing radical radiotherapy: two proteins with predictive value. EBioMedicine 2(8):841–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2011) A retrospective study of breast cancer subtypes: the risk of relapse and the relations with treatments. Breast Cancer Res Treat 130(2):489–498

    Article  PubMed  Google Scholar 

  • Wierzbicka M et al (2015) The rationale for HPV-related oropharyngeal cancer de-escalation treatment strategies. Contemp Oncol (Pozn) 19(4):313–322

    Google Scholar 

  • Williams JR et al (2007) Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol 46(5):628–638

    Article  CAS  PubMed  Google Scholar 

  • Woolston CM et al (2011) Expression of thioredoxin system and related peroxiredoxin proteins is associated with clinical outcome in radiotherapy treated early stage breast cancer. Radiother Oncol 100(2):308–313

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2008) The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer 59(2):232–239

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita V. Dandapani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dandapani, S.V. (2017). Biomarkers and Radiotherapy. In: Wong, J., Schultheiss, T., Radany, E. (eds) Advances in Radiation Oncology. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53235-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53235-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53233-2

  • Online ISBN: 978-3-319-53235-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics